-a/4-1/b=3/4. Tìm a; b nguyên thỏa mãn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu mẫu là bình phương, tức \(A=\dfrac{a^4}{\left(b-1\right)^2}+\dfrac{b^4}{\left(a-1\right)^2}\) thì vẫn làm tương tự:
Ta có:
\(\dfrac{a^4}{\left(b-1\right)^2}+16\left(b-1\right)+16\left(b-1\right)+16\ge4\sqrt[4]{\dfrac{a^4.16^3.\left(b-1\right)^2}{\left(b-1\right)^2}}=32a\)
\(\dfrac{b^4}{\left(a-1\right)^2}+16\left(a-1\right)+16\left(a-1\right)+16\ge32b\)
Cộng vế:
\(A+32\left(a+b\right)-32\ge32\left(a+b\right)\)
\(\Rightarrow A\ge32\)
Ta có:
\(\dfrac{a^4}{\left(b-1\right)^3}+16\left(b-1\right)+16\left(b-1\right)+16\left(b-1\right)\ge32a\)
\(\dfrac{b^4}{\left(a-1\right)^3}+16\left(a-1\right)+16\left(a-1\right)+16\left(a-1\right)\ge32b\)
Cộng vế:
\(A+48\left(a+b\right)-96\ge32\left(a+b\right)\)
\(\Leftrightarrow A\ge96-16\left(a+b\right)\ge96-16.4=32\)
\(A_{min}=32\) khi \(a=b=2\)
\(\dfrac{a^4}{\left(b-1\right)^3}+\dfrac{256}{81}\left(b-1\right)+\dfrac{256}{81}\left(b-1\right)+\dfrac{256}{81}\left(b-1\right)\ge4\sqrt[4]{\dfrac{a^4.256^3.\left(b-1\right)^3}{81^3\left(b-1\right)^3}}=\dfrac{256a}{27}\)
\(\dfrac{b^4}{\left(a-1\right)^3}+\dfrac{256}{81}\left(a-1\right)+\dfrac{256}{81}\left(a-1\right)+\dfrac{256}{81}\left(a-1\right)\ge\dfrac{256b}{27}\)
Cộng vế với vế:
\(P+\dfrac{256}{27}\left(a+b\right)-\dfrac{512}{27}\ge\dfrac{256}{27}\left(a+b\right)\)
\(\Rightarrow P\ge\dfrac{512}{27}\)
Dấu "=" xảy ra khi \(a=b=4\)
a) Ta có A = 1 + 4 + 42 + 43 + ... + 449
4A = 4 + 42 + 43 + 44 + ... + 450
4A - A = ( 4 + 42 + 43 + 44 + ... + 450 ) - ( 1 + 4 + 42 + 43 + ... + 449 )
3A = 450 - 1
A = \(\dfrac{4^{50}-1}{3}\)
Vì A = \(\dfrac{4^{50}-1}{3}\) < \(\dfrac{4^{100}}{3}\) = \(\dfrac{B}{3}\) nên A < \(\dfrac{B}{3}\)
b) Ta có A = 1 + 4 + 42 + 43 + ... + 449
= 1 + 4 + ( 42 + 43 + 44 ) + ( 45 + 46 + 47 ) + ... + ( 447 + 448 + 449 )
= 5 + 42( 1 + 4 + 42 ) + 45( 1 + 4 + 42 ) + ... + 447( 1 + 4 + 42 )
= 5 + 42 . 16 + 45 . 16 + ... + 447 . 16
= 5 + 21( 42 + 45 + ... + 447 )
Vì [ 21( 42 + 45 + ... + 447 )] ⋮ 21 nên A = 5 + 21( 42 + 45 + ... + 447 ) chia 21 dư 5
Vậy A chia 21 dư 5
đây là toán lớp 6 ư. Ròi xong tới công chuyện với me òi năm sau lên lớp 6
a) \(\frac{3}{4}-\frac{1}{6}-\frac{a}{b}=\frac{1}{2}\)
\(\frac{7}{12}-\frac{a}{b}=\frac{1}{2}\)
\(\frac{a}{b}=\frac{7}{12}-\frac{1}{2}\)
\(\frac{a}{b}=\frac{1}{12}\)
b) \(\frac{a}{b}\times\frac{1}{4}\times\frac{2}{5}=\frac{1}{7}\)
\(\frac{a}{b}\times\frac{1}{10}=\frac{1}{7}\)
\(\frac{a}{b}=\frac{1}{7}:\frac{1}{10}\)
\(\frac{a}{b}=\frac{10}{7}\)
c) \(\frac{1}{3}:\frac{a}{b}=\frac{2}{3}:\frac{4}{3}\)
\(\frac{1}{3}:\frac{a}{b}=\frac{1}{2}\)
\(\frac{a}{b}=\frac{1}{3}:\frac{1}{2}\)
\(\frac{a}{b}=\frac{3}{2}\)
TH1: \(a=b=\dfrac{1}{2}\Rightarrow m=\pm1\)
TH2: \(a\ne b\)
\(a^4-b^4=a^3-b^3\Leftrightarrow\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)=\left(a-b\right)\left(a^2+b^2+ab\right)\)
\(\Rightarrow a^2+b^2=a^2+b^2+ab\)
\(\Rightarrow ab=0\Rightarrow\dfrac{m^2+1}{8}=0\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Vậy \(m=\pm1\)
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
a) \(...\dfrac{11}{4}-a+\dfrac{1}{4}=\dfrac{3}{2}\)
\(\dfrac{11}{4}+\dfrac{1}{4}-a=\dfrac{3}{2}\)
\(3-a=\dfrac{3}{2}\)
\(a=3-\dfrac{3}{2}\)
\(a=\dfrac{6}{2}-\dfrac{3}{2}\)
\(a=\dfrac{3}{2}\)
b) \(...\dfrac{13}{4}-a-\dfrac{13}{4}=\dfrac{7}{8}\)
\(\dfrac{13}{4}-\dfrac{13}{4}-a=\dfrac{7}{8}\)
\(0-a=\dfrac{7}{8}\)
\(a=-\dfrac{7}{8}\) (ra số âm lớp 5 chưa học nên bạn xem lại đề)
c) \(...\dfrac{17}{6}-\dfrac{3}{2}-a=\dfrac{1}{6}\)
\(\dfrac{17}{6}-\dfrac{9}{6}-a=\dfrac{1}{6}\)
\(\dfrac{8}{6}-a=\dfrac{1}{6}\)
\(a=\dfrac{8}{6}-\dfrac{1}{6}\)
\(a=\dfrac{7}{6}\)
a, 2\(\dfrac{3}{4}\) - a + \(\dfrac{1}{4}\) = 1\(\dfrac{1}{2}\)
a = 2 + \(\dfrac{3}{4}\) + \(\dfrac{1}{4}\) - 1 - \(\dfrac{1}{2}\)
a = 2 + 1 - 1 - \(\dfrac{1}{2}\)
a = 2 - \(\dfrac{1}{2}\)
a = \(\dfrac{3}{2}\)
b, 3\(\dfrac{1}{4}\) - a - 3\(\dfrac{1}{4}\) = \(\dfrac{7}{8}\)
(3\(\dfrac{1}{4}\) - 3\(\dfrac{1}{4}\)) - a = \(\dfrac{7}{8}\)
a = - \(\dfrac{7}{8}\)
c, 2\(\dfrac{5}{6}\) - 1\(\dfrac{1}{2}\) - a = \(\dfrac{1}{6}\)
a = 2 + \(\dfrac{5}{6}\) - 1 - \(\dfrac{1}{2}\) - \(\dfrac{1}{6}\)
a = (2-1) + (\(\dfrac{5}{6}\) - \(\dfrac{1}{6}\)) - \(\dfrac{1}{2}\)
a = 1 + \(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)
a = \(\dfrac{7}{6}\)
a, \(\dfrac{a}{b}=\dfrac{4}{7}+\dfrac{1}{2}=\dfrac{8+7}{14}=\dfrac{15}{14}\)
b, \(\dfrac{a}{b}=\dfrac{5}{6}+\dfrac{1}{4}+\dfrac{1}{3}=\dfrac{10+3+4}{12}=\dfrac{17}{12}\)
\(a:\dfrac{a}{b}-\dfrac{1}{2}=\dfrac{4}{7}\\ \dfrac{a}{b}=\dfrac{4}{7}+\dfrac{1}{2}\\ \dfrac{a}{b}=\dfrac{8}{14}+\dfrac{7}{14}\\ \dfrac{a}{b}=\dfrac{15}{14}\\ b:\dfrac{a}{b}-\dfrac{1}{4}-\dfrac{1}{3}=\dfrac{5}{6}\\ \dfrac{a}{b}-\left(\dfrac{1}{4}+\dfrac{1}{3}\right)=\dfrac{5}{6}\\ \dfrac{a}{b}-\dfrac{7}{12}=\dfrac{5}{6}\\ \dfrac{a}{b}=\dfrac{5}{6}+\dfrac{7}{12}\\ \dfrac{a}{b}=\dfrac{17}{12}\)
\(-\frac{a}{4}-\frac{1}{b}=\frac{3}{4}=>\frac{1}{b}=\frac{3}{4}-\frac{a}{4}=>\frac{1}{b}=\frac{3-a}{4}=>4=b\left(3-a\right)\)
=> b(a-3) là ước của 4.