Tìm giá trị nhỏ nhất của \(E=\frac{x}{\sqrt{x}-1}\)với x>1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(E=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}:\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\) \(\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\sqrt{x}}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\)\(\left[\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(E=\frac{x}{\sqrt{x}-1}\)
b) \(E>1\Leftrightarrow\frac{x}{\sqrt{x}-1}>1\)
\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-1>0\)
\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{x-2\sqrt{x}+1+\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{\left(\sqrt{x}-1\right)^2+\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Rightarrow\sqrt{x}-1>0\) vì tử của phân số luôn \(\ge0\forall x\ge0\)
\(\Rightarrow x>1\)
kết hợp với ĐKXĐ \(x\ge0\Rightarrow x>1\)
vậy \(x>1\) thì \(E>1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
I) Đk: x > 0 và x \(\ne\)9
\(D=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(D=\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(D=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
=> \(\frac{1}{D}=\frac{\sqrt{x}+3}{\sqrt{x}+1}=\frac{\sqrt{x}+1+2}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\)
Để 1/D nguyên <=> \(\frac{2}{\sqrt{x}+1}\in Z\)
<=> \(2⋮\left(\sqrt{x}+1\right)\) <=> \(\sqrt{x}+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Do \(x>0\) => \(\sqrt{x}+1>1\) => \(\sqrt{x}+1=2\)
<=> \(\sqrt{x}=1\) <=> x = 1 (tm)
\(E=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\)
\(E=\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)
\(E=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b) Với x\(\ge\)0; ta có:
\(E=\frac{8}{9}\) <=> \(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)
<=> \(3\sqrt{x}=2x-2\sqrt{x}+2\)
<=> \(2x-4\sqrt{x}-\sqrt{x}+2=0\)
<=> \(\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
<=> \(\orbr{\begin{cases}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)
e) Ta có: \(E=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\ge0\forall x\in R\) (vì \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\))
Dấu "=" xảy ra<=> x = 0
Vậy MinE = 0 <=> x = 0
Lại có: \(\frac{1}{E}=\frac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}-1+\frac{1}{\sqrt{x}}\right)\ge\frac{3}{4}\left(2\sqrt{\sqrt{x}\cdot\frac{1}{\sqrt{x}}}-1\right)\)(bđt cosi)
=> \(\frac{1}{E}\ge\frac{3}{2}.\left(2-1\right)=\frac{3}{2}\)=> \(E\le\frac{2}{3}\)
Dấu "=" xảy ra<=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\) <=> x = 1
Vậy MaxE = 2/3 <=> x = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bất đẳng thức Cô-si ta có :
\(P=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}\)
\(=\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{xy}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{xy}}\)
\(\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}\left(x+y-\frac{x+y}{2}\right)}{\sqrt{xy}}\)
\(=\frac{x+y}{\sqrt[4]{xy}}\ge\frac{x+y}{\sqrt{\frac{x+y}{2}}}=\frac{1}{\sqrt{\frac{1}{2}}}=\sqrt{2}\)
Dấu "=" khi x = y = 1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\frac{x}{\sqrt{x}-1}=\frac{\sqrt{x}^2-1+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1}{\sqrt{x-1}}=\sqrt{x}+1+\frac{1}{\sqrt{x}-1}\)
\(=2+\left(\sqrt{x}-1\right)+\frac{1}{\sqrt{x}-1}\)
Áp dụng BĐT AM-GM ta có:
\(P\ge2+2\sqrt{\frac{\left(\sqrt{x}-1\right)\cdot1}{\sqrt{x}-1}}=2+2=4\)
Dấu "=" xảy ra khi \(x=4\)
Vậy \(P_{min}=4\Leftrightarrow x=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
\(\Rightarrow B\sqrt{x}=\sqrt{x}+\frac{2.\sqrt{x}}{\sqrt{x}-1}\)
\(\Rightarrow B\sqrt{x}=\left(\sqrt{x}-1+\frac{2}{\sqrt{x}-1}\right)+3\)
\(\Rightarrow B\sqrt{x}\ge2\sqrt{\left(\sqrt{x}-1\right).\frac{2}{\sqrt{x}-1}}+3\)
\(\Rightarrow B\sqrt{x}\ge2\sqrt{2}+3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để E=\(\frac{X^2}{x-1}\)nhận giá trị nhỏ nhất thì x2 nhỏ nhất
Mà \(x^2\ge0\)và x>1 nên x=2
E=x2/x-1=(x2-1+1)/(x-1)=x2-1/x-1 + 1/x-1= (x-1)(x+1)/x-1 + 1/x-1=x+1 + 1/x-1 = (x-1 + 1/x-1) + 2
Áp dụng bđt am-gm (do x-1>0) ta có E >/ 2+2 >/ 4
đẳng thức xảy ra <=> x=2
Ta có: E = \(\frac{x}{\sqrt{x}-1}=\frac{x-1+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1}{\sqrt{x}-1}=\sqrt{x}+1+\frac{1}{\sqrt{x}-1}\)
E = \(\sqrt{x}-1+\frac{1}{\sqrt{x}-1}+2\ge2\sqrt{\left(\sqrt{x}-1\right)\cdot\frac{1}{\sqrt{x}-1}}+2=2+2=4\)(bđt cosi)
Dấu "=" xảy ra <=> \(\sqrt{x}-1=\frac{1}{\sqrt{x}-1}\) <=> \(\left(\sqrt{x}-1\right)^2=1\)
<=> \(\orbr{\begin{cases}\sqrt{x}-1=1\\\sqrt{x}-1=-1\end{cases}}\) <=> \(\orbr{\begin{cases}x=4\left(tm\right)\\x=0\left(ktm\right)\end{cases}}\)
Vậy MinE = 4 <=>. x = 4