cho a,b,c thỏa mãn a>b>0; c lớn hơn bằng \(\sqrt{ab}\). chứng minh:
\(\dfrac{c+a}{\sqrt{c^2+a^2}}\) lớn hơn bằng\(\dfrac{c+b}{\sqrt{c^2+b^2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì abc>0 nên có ít nhất 1 số lớn hơn 0
Vai trò của a, b, c như nhua nên chọn a>0
TH1: b<0;c<0 \(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\\ \Rightarrow b^2+c^2+2bc< -ab-ac\\ bc+ab+ac< -b^2-c^2-bc=-\left(b^2+c^2+a^2\right)< 0\)(trái với giả thiết)
\(\Rightarrow\)TH2: b>0, c>0 thì a>0( luôn đúng)
Vậy a, b, c >0
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai,
a,b,c là 3 số dương.
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).
Vậy điều giả sử trên là sai,
Do đó a,b,c là 3 số dương.
Xét các trường hợp
TH1 :có 1 số < 0, 2 số > 0.
giả sử a < 0, b,c > 0
\(\Rightarrow bc>0\)
Mà a < 0 \(\Rightarrow abc< 0\)( trái với gt )
\(\Rightarrow\)loại
TH2 : 2 số < 0, 1 số > 0
giả sử b,c < 0, a > 0
\(\Rightarrow bc>0,b+c< 0\)
Mà a + b + c > 0 nên \(a>-\left(b+c\right)>0\)
\(\Rightarrow a\left(b+c\right)< -\left(b+c\right)\left(b+c\right)=-\left(b+c\right)^2< 0\)
Nên ab + bc + ac = a ( b + c ) + bc < -(b+c)2 + bc = - ( b2 + c2 + bc ) < 0 ( trái với giả thiết )
TH3 : 3 số a,b,c < 0
\(\Rightarrow abc< 0\)( trái với giả thiết )
Vậy cả 3 số a,b,c đều lớn hơn 0
Đề đúng: Cho a,b,c thỏa mãn a+b+c>0; ab+bc+ac>0; abc>0. Chứng minh a,b,c>0
Vì abc>0 nên có ít nhất 1 số lớn hơn 0
Vai trò của a, b, c như nhau nên chọn a>0
TH1: b<0;c<0
\(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\)
\(\Rightarrow b^2+2bc+c^2< -ab-ac\)
\(\Rightarrow b^2+bc+c^2< -\left(ab+bc+ca\right)\)(vô lí)
TH2: b>0, c>0 thì a>0( luôn đúng)
Vậy a, b, c >0
Ta có :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}+2\sqrt{\frac{c}{a}\cdot\frac{a}{c}}+2\sqrt{\frac{b}{c}\cdot\frac{c}{b}}=3+2+2+2=9\)
Dấu bằng của BĐT xảy ra khi a = b= c = 1/3
\(c\ge\sqrt{ab}\Leftrightarrow\dfrac{c}{a}.\dfrac{c}{b}\ge1\)
BĐT cần chứng minh tương đương:
\(\dfrac{\left(c+a\right)^2}{c^2+a^2}\ge\dfrac{\left(c+b\right)^2}{c^2+b^2}\Leftrightarrow\dfrac{\left(\dfrac{c}{a}+1\right)^2}{\left(\dfrac{c}{a}\right)^2+1}\ge\dfrac{\left(\dfrac{c}{b}+1\right)^2}{\left(\dfrac{c}{b}\right)^2+1}\)
Đặt \(\left(\dfrac{c}{a};\dfrac{c}{b}\right)=\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}xy\ge1\\y>x\Rightarrow y-x>0\end{matrix}\right.\) (1)
BĐT cần c/m trở thành: \(\dfrac{\left(x+1\right)^2}{x^2+1}\ge\dfrac{\left(y+1\right)^2}{y^2+1}\Leftrightarrow\dfrac{x}{x^2+1}\ge\dfrac{y}{y^2+1}\)
\(\Leftrightarrow xy^2+x\ge x^2y+y\Leftrightarrow xy\left(y-x\right)-\left(y-x\right)\ge0\)
\(\Leftrightarrow\left(xy-1\right)\left(y-x\right)\ge0\) luôn đúng theo (1)
Vậy BĐT đã cho được c/m
Dấu "=" xảy ra khi \(xy=1\) hay \(c=\sqrt{ab}\)