cho a,b,c thuộc Q thỏa mãn a+2b+3c>=20. Tím GTNN: a+b+c+3/a+9/2b+4/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\left(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\right)\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\dfrac{1}{4}\left(a+2b+3c\right)\\ A\ge2\sqrt{\dfrac{3a}{4}\cdot\dfrac{3}{a}}+2\sqrt{\dfrac{b}{2}\cdot\dfrac{9}{2b}}+2\sqrt{\dfrac{c}{4}\cdot\dfrac{4}{c}}+\dfrac{1}{4}\cdot20\\ A\ge3+3+2+5=13\\ A_{min}=13\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
đặt
\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
\(=>4A=4a+4b+4c+\dfrac{12}{a}+\dfrac{36}{2b}+\dfrac{16}{c}\)
\(=>4A=a+2b+3c+3a+\dfrac{12}{a}+2b+\dfrac{36}{2b}+c+\dfrac{16}{c}\)
áp dụng BDT AM-GM
\(=>\dfrac{12}{a}+3a\ge2\sqrt{12.3}=12\)
\(=>2b+\dfrac{36}{2b}\ge2\sqrt{36}=12\)
\(=>c+\dfrac{16}{c}\ge2\sqrt{16}=8\)
\(=>4A\ge20+12+12+8=52=>A\ge13\)
dấu"=" xảy ra<=>a=2,b=3,c=4
Ta có:
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)
\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.\left(a+2b+3c\right)\)
\(\ge3+3+2+\frac{20}{4}=13\)
Vậy GTNN của A là 13 đạt được khi \(\hept{\begin{cases}a=2\\b=3\\c=4\end{cases}}\)
\(S=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.20\)
\(\Rightarrow S\ge13\)
Đẳng thức xảy ra khi a = 2, b = 3, c = 4
Vậy minS = 13 tại (a,b,c) = (2,3,4)
Đúng như bạn Quang viết, GTNN của S là 13 khi \(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\), nhưng mình cần một lời giải thích vì sao nó lại ra như vậy.
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(A=\frac{1}{4}\left(a+2b+3c\right)+\left(\frac{3}{4}a+\frac{3}{a}\right)+\left(\frac{1}{2}b+\frac{9}{2b}\right)+\left(\frac{1}{4}c+\frac{4}{c}\right)\)
Áp dụng BĐT AM-GM ta có:
\(A\ge\frac{1}{4}\left(a+2b+3c\right)+2.\sqrt{\frac{3}{4}a.\frac{3}{a}}+2.\sqrt{\frac{1}{2}b.\frac{9}{2b}}+2.\sqrt{\frac{1}{4}c.\frac{4}{c}}\)
\(\ge\frac{1}{4}.20+\frac{2.3}{2}+\frac{2.3}{2}+2=5+3+3+2=13\)
Dấu " = " xảy ra <=> a=2 ; b=3 ; c=4
KL:........................................................
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(=\left(\frac{3}{a}+\frac{3a}{4}\right)+\left(\frac{9}{2b}+\frac{b}{2}\right)+\left(\frac{4}{c}+\frac{c}{4}\right)+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge2\sqrt{\frac{3}{a}\cdot\frac{3a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{1}{4}\cdot20\)
\(=2\cdot\frac{3}{2}+2\cdot\frac{3}{2}+2\cdot1+5=3+3+2+5=13\)
Vậy min A = 13 khi a = 2; b = 3; c = 4
\(P=\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)
\(=\frac{6047-a}{2015+a}+\frac{6048-b}{2016+b}+\frac{6049-c}{2017+c}\)
\(=\frac{8062}{2015+a}+\frac{8064}{2016+b}+\frac{8066}{2017+c}-3\)
\(\ge\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{2015+2016+2017+a+b+c}-3=\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{8064}-3\)
Dấu = xảy ra khi ....
Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)
\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)
Ta có:
\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)
Tương tự:
\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)
Cộng vế:
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)
\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)
\(A=\left(\frac{3}{a}+\frac{3a}{4}\right)+\left(\frac{9}{2b}+\frac{b}{2}\right)+\left(\frac{4}{c}+\frac{c}{4}\right)+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge2\sqrt{\frac{3}{a}.\frac{3a}{4}}+2\sqrt{\frac{9}{2b}.\frac{b}{2}}+2\sqrt{\frac{4}{c}.\frac{c}{4}}+\frac{1}{4}.20\)
\(=3+3+2+5\)
\(=13\)
Dấu "=" xảy ra khi \(a=2;\text{ }b=3;\text{ }c=4\)
Vậy GTNN của A là 13.