K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2021

M N A B C MN là đường trung bình của ABC P

\(\text{Trên tia đối của NM lấy P sao cho NM=NP}\)

\(\text{Do MN là đường trung bình của }\Delta ABC\left(gt\right)\Rightarrow M\text{ là trung điểm AB, N là trung điểm AC}\)

\(\Rightarrow AM=BM\left(\text{do M là trung điểm AB}\right),AN=CN\left(\text{ do N là trung điểm AC}\right)\)

\(\Delta ANM=\Delta CNP\text{ do}\hept{\begin{cases}NM=NP\\\widehat{ANM}=\widehat{CNP}\left(\text{đối đỉnh}\right)\\AN=CN\left(cmt\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\widehat{AMN}=\widehat{CPN}\left(2\text{ góc tương ứng}\right)\\AM=CP\left(2\text{ cạnh tương ứng}\right)\end{cases}}\)

\(\text{Do }\widehat{AMN}=\widehat{CPN}\left(cmt\right),\text{mà 2 góc này ở vị trí so le trong của 2 đường thẳng AB và NP}\Rightarrow\text{AB//NP}\)\(\left(\text{dấu hiệu nhận biết}\right)\)

\(\Rightarrow\text{BM//NP}\left(do\text{ M}\in AB\right)\Rightarrow\widehat{BMC}=\widehat{PCM}\left(2\text{ góc so le trong}\right)\)

\(\text{Vì AM=CP(cmt), mà AM=BM(gt)}\Rightarrow BM=CP\)

\(\Delta BMC=\Delta PCM\text{ do}\hept{\begin{cases}BM=CP\left(cmt\right)\\\widehat{BMC}=\widehat{PCM}\left(\text{cmt}\right)\\MC\text{ chung}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\widehat{BCM}=\widehat{PMC}\left(2\text{ góc tương ứng}\right)\\BC=PM\left(2\text{ cạnh tương ứng}\right)\end{cases}}\)

\(\text{Ta có:}\widehat{BCM}=\widehat{PMC}\left(cmt\right),\text{mà 2 góc này ở vị trí so le trong của 2 đường thẳng MN và BC}\Rightarrow\text{MN//BC}\left(1\right)\)

\(PM=2.MN\Rightarrow MN=\frac{PM}{2},\text{ mà PM=BC}\Rightarrow MN=\frac{BC}{2}\left(2\right)\)

\(\text{Từ (1) và (2)}\Rightarrow MN\text{// và =}\frac{1}{2}BC\left(đpcm\right)\)

17 tháng 9 2017
Định lý 1
Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.[1]

Đề bài minh hoạ:

Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh {\displaystyle NA=NC}{\displaystyle NA=NC}.

Chứng minh định lý:

Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang): {\displaystyle MF=NC}{\displaystyle MF=NC} (1)

Xét hai tam giác BMF và MAN, có: {\displaystyle {\widehat {\rm {MBF}}}={\widehat {\rm {AMN}}}}{\displaystyle {\widehat {\rm {MBF}}}={\widehat {\rm {AMN}}}} (hai góc đồng vị), {\displaystyle BM=MA}{\displaystyle BM=MA} và {\displaystyle {\widehat {\rm {BMF}}}={\widehat {\rm {MAN}}}}{\displaystyle {\widehat {\rm {BMF}}}={\widehat {\rm {MAN}}}} (hai góc đồng vị). Suy ra {\displaystyle \triangle BMF=\triangle MAN}{\displaystyle \triangle BMF=\triangle MAN} (trường hợp góc - cạnh - góc), từ đó suy ra {\displaystyle MF=AN}{\displaystyle MF=AN} (2)

Từ (1) và (2) suy ra {\displaystyle NA=NC}{\displaystyle NA=NC}. Định lý được chứng minh.

Định lý 2

Đường trung bình của tam giác thì song song với cạnh thứ ba và dài bằng nửa cạnh ấy.[2]

Cho tam giác ABC có M là trung điểm cạnh AB và N là trung điểm cạnh AC ({\displaystyle MA=MB}{\displaystyle MA=MB} và {\displaystyle NA=NC}{\displaystyle NA=NC}). Chứng minh {\displaystyle {\overline {MN}}\parallel {\overline {BC}}}{\displaystyle {\overline {MN}}\parallel {\overline {BC}}} và {\displaystyle MN={\frac {1}{2}}BC}{\displaystyle MN={\frac {1}{2}}BC}.

Chứng minh định lý:

Kéo dài đoạn MN về phía N một đoạn NF có độ dài bằng MN. Nhận thấy: {\displaystyle \triangle ANM=\triangle CNF}{\displaystyle \triangle ANM=\triangle CNF} (trường hợp cạnh - góc - cạnh)

suy ra {\displaystyle {\widehat {\rm {MAN}}}={\widehat {\rm {NCF}}}}{\displaystyle {\widehat {\rm {MAN}}}={\widehat {\rm {NCF}}}}. Hai góc này ở vị trí so le trong lại bằng nhau nên {\displaystyle {\overline {CF}}\parallel {\overline {MA}}}{\displaystyle {\overline {CF}}\parallel {\overline {MA}}} hay {\displaystyle {\overline {CF}}\parallel {\overline {BA}}}{\displaystyle {\overline {CF}}\parallel {\overline {BA}}}. Mặt khác vì hai tam giác này bằng nhau nên {\displaystyle CF=MA}{\displaystyle CF=MA}, suy ra {\displaystyle CF=MB}{\displaystyle CF=MB} (vì {\displaystyle MA=MB}{\displaystyle MA=MB}). Tứ giác BMFC có hai cạnh đối BM và FC vừa song song, vừa bằng nhau nên BMFC là hinh binh hanh, suy ra {\displaystyle {\overline {MF}}\parallel {\overline {BC}}}{\displaystyle {\overline {MF}}\parallel {\overline {BC}}} hay {\displaystyle {\overline {MN}}\parallel {\overline {BC}}}{\displaystyle {\overline {MN}}\parallel {\overline {BC}}}. Mặt khác, {\displaystyle MN=NF={\frac {1}{2}}MF}{\displaystyle MN=NF={\frac {1}{2}}MF}, mà {\displaystyle MF=BC}{\displaystyle MF=BC} (tính chất hình bình hành), nên {\displaystyle MN={\frac {1}{2}}BC}{\displaystyle MN={\frac {1}{2}}BC}. Định lý được chứng minh.

16 tháng 9 2017

D/L: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.

ta lay vd 1 de bai de chung minh:

Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh {\displaystyle NA=NC}{\displaystyle NA=NC}

ta chung minh dinh ly

Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang): {\displaystyle MF=NC}{\displaystyle MF=NC} (1)

Xét hai tam giác BMF và MAN, có: {\displaystyle {\widehat {\rm {MBF}}}={\widehat {\rm {AMN}}}}{\displaystyle {\widehat {\rm {MBF}}}={\widehat {\rm {AMN}}}} (hai góc đồng vị), {\displaystyle BM=MA}{\displaystyle BM=MA} và {\displaystyle {\widehat {\rm {BMF}}}={\widehat {\rm {MAN}}}}{\displaystyle {\widehat {\rm {BMF}}}={\widehat {\rm {MAN}}}} (hai góc đồng vị). Suy ra {\displaystyle \triangle BMF=\triangle MAN}{\displaystyle \triangle BMF=\triangle MAN} (trường hợp góc - cạnh - góc), từ đó suy ra {\displaystyle MF=AN}{\displaystyle MF=AN} (2)

Từ (1) và (2) suy ra {\displaystyle NA=NC}{\displaystyle NA=NC}. ( dieu phai chung minh )

D/L : Đường trung bình của tam giác thì song song với cạnh thứ ba và dài bằng nửa cạnh ấy

VD : Cho tam giác ABC có M là trung điểm cạnh AB và N là trung điểm cạnh AC ({\displaystyle MA=MB} và {\displaystyle NA=NC}). Chứng minh {\displaystyle {\overline {MN}}\parallel {\overline {BC}}} và {\displaystyle MN={\frac {1}{2}}BC}

chung minh dinh li

Kéo dài đoạn MN về phía N một đoạn NF có độ dài bằng MN. Nhận thấy: {\displaystyle \triangle ANM=\triangle CNF}{\displaystyle \triangle ANM=\triangle CNF} (trường hợp cạnh - góc - cạnh)

suy ra {\displaystyle {\widehat {\rm {MAN}}}={\widehat {\rm {NCF}}}}{\displaystyle {\widehat {\rm {MAN}}}={\widehat {\rm {NCF}}}}. Hai góc này ở vị trí so le trong lại bằng nhau nên {\displaystyle {\overline {CF}}\parallel {\overline {MA}}}{\displaystyle {\overline {CF}}\parallel {\overline {MA}}} hay {\displaystyle {\overline {CF}}\parallel {\overline {BA}}}{\displaystyle {\overline {CF}}\parallel {\overline {BA}}}. Mặt khác vì hai tam giác này bằng nhau nên {\displaystyle CF=MA}{\displaystyle CF=MA}, suy ra {\displaystyle CF=MB}{\displaystyle CF=MB} (vì {\displaystyle MA=MB}{\displaystyle MA=MB}). Tứ giác BMFC có hai cạnh đối BM và FC vừa song song, vừa bằng nhau nên BMFC là hình bình hành, suy ra {\displaystyle {\overline {MF}}\parallel {\overline {BC}}}{\displaystyle {\overline {MF}}\parallel {\overline {BC}}} hay {\displaystyle {\overline {MN}}\parallel {\overline {BC}}}{\displaystyle {\overline {MN}}\parallel {\overline {BC}}}. Mặt khác, {\displaystyle MN=NF={\frac {1}{2}}MF}{\displaystyle MN=NF={\frac {1}{2}}MF}, mà {\displaystyle MF=BC}{\displaystyle MF=BC} (tính chất hình bình hành), nên {\displaystyle MN={\frac {1}{2}}BC}{\displaystyle MN={\frac {1}{2}}BC}

6 tháng 8 2021

Có: `AD=DB => D` là trung điểm của `AB`.

Mà `K` là trung điểm của `BC`

`=> DK` là đường trung bình của `\DeltaABC`

`=> DK////AC ; DK=1/2 AC`

Xét ΔABC có 

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC và \(DE=\dfrac{1}{2}BC\)

Xét ΔABC có 

D là trung điểm của AB

K là trung điểm của BC

Do đó: DK là đường trung bình của ΔABC

Suy ra: DK//AC và \(DK=\dfrac{AC}{2}\)

25 tháng 2 2017

Vì AD và BE là 2 đường trung tuyến của ΔABC cắt nhau tại G nên theo tính chất đường trung tuyến, ta có: AG = 2/3 AD

10 tháng 12 2018

Cái Này Sẽ Được Chứng Minh Ở Bài Đường Trung Bình Lớp 8, Bạn Tra Mạng Sẽ Có Nhé!

Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

17 tháng 3 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Gọi D là trung điểm của BC, E là trung điểm của AC. Theo câu a)) đường thẳng qua D, song song với AB phải cắt AC tại trung điểm của AC nên đường thẳng đó phải đi qua E, hay DE // AB.

6 tháng 1 2016

Tam giác nào, bạn thử vẽ hình xem nào.