Phân tích thành nhân tử: x6- y6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x⁶ + y⁶ = (x²)³ + (y²)³
= (x² + y²)(x⁴ - x²y² + y⁴)
b) x⁶ - y⁶
= (x³)² - (y³)²
= (x³ - y³)(x³ + y³)
= (x - y)(x² + xy + y²)(x + y)(x² - xy + y²)
x 6 - y 6 = x 3 2 - y 3 2 = x 3 + y 3 x 3 - y 3 = x + y x 2 - x y + y x - y x 2 + x y + y 2
Ta có:
x 6 - y 6 = x 3 2 - y 3 2 = x 3 + y 3 x 3 - y 3 = x + y x 2 - x y + y 2 x - y x 2 + x y + y 2
Đáp án cần chọn là : C
a, \(8^3yz+12^2yz+6xyz+yz\)
\(=512yz+144yz+6xyz+yz\)
\(=yz\left(512+14+6x+1\right)\)
\(=yz\left(527+6x\right)\)
$---$
b, \(81x^4\left(z^2-y^2\right)-z^2+y^2\)
\(=81x^4\left(z^2-y^2\right)-\left(z^2-y^2\right)\)
\(=\left(z^2-y^2\right)\left(81x^4-1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left[\left(9x^2\right)^2-1^2\right]\)
\(=\left(z-y\right)\left(z+y\right)\left(9x^2-1\right)\left(9x^2+1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left[\left(3x\right)^2-1^2\right]\left(9x^2+1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left(3x-1\right)\left(3x+1\right)\left(9x^2+1\right)\)
$---$
c, \(\dfrac{x^3}{8}-\dfrac{y^3}{27}+\dfrac{x}{2}-\dfrac{y}{3}\)
\(=\left[\left(\dfrac{x}{2}\right)^3-\left(\dfrac{y}{3}\right)^3\right]+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)
\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}\right)+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)
\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}+1\right)\)
$---$
d, \(x^6+x^4+x^2y^2+y^4-y^6\)
\(=\left(x^6-y^6\right)+\left(x^4+x^2y^2+y^4\right)\)
\(=\left[\left(x^2\right)^3-\left(y^2\right)^3\right]+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2+1\right)\)
$Toru$
a) x6 – x4 + 2x3 + 2x2
= x2(x4 – x2 + 2x + 2)
= x2[x2(x2 – 1) + 2(x + 1)]
= x2. [x2.(x -1).(x + 1) + 2(x+ 1)]
= x2 (x+ 1).[x2(x- 1)+ 2]
= x2(x + 1)(x3 – x2 + 2)
= x2(x + 1)[(x3 + 1) – (x2 – 1)]
= x2(x + 1).[(x + 1).(x2 – x + 1) - (x - 1).(x + 1)]
= x2(x + 1)(x + 1)( x2 – x + 1 – x + 1)
= x2(x + 1)2(x2 – 2x + 2).
b) 4x4 + y4 = 4x4 + 4x2y2 + y4 - 4x2y2
= (2x2 + y2)2 - (2xy)2
= (2x2 + y2 + 2xy)(2x2 + y2 - 2xy)
a) (x - y)(x + y + 3). b) (x + y - 2xy)(2 + y + 2xy).
c) x 2 (x + l)( x 3 - x 2 + 2). d) (x – 1 - y)[ ( x - 1 ) 2 + ( x - 1 ) y + y 2 ].
a ) \(2x-1-x^2\)
\(=\left(x-1\right)-\left(x^2-x\right)\)
\(=\left(x-1\right)\left(1-x\right)\)
\(=-\left(x-1\right)^2\)
b) \(8x^3+y^6\)
\(=\left(2x+y^2\right)\left(4x^2-2xy^2+y^4\right)\)
c) \(x^2-16+4xy+4y^2\)
\(=\left(x^2+4xy+4y^2\right)-16\)
\(=\left(x+2y\right)^2-16\)
\(=\left(x+2y+4\right)\left(x+2y-4\right)\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a,
\(A=4(x-2)(x+1)+(2x-4)^2+(x+1)^2\\=[2(x-2)]^2+2\cdot2(x-2)(x+1)+(x+1)^2\\=[2(x-2)+(x+1)]^2\\=(2x-4+x+1)^2\\=(3x-3)^2\)
Thay $x=\dfrac12$ vào $A$, ta được:
\(A=\Bigg(3\cdot\dfrac12-3\Bigg)^2=\Bigg(\dfrac{-3}{2}\Bigg)^2=\dfrac94\)
Vậy $A=\dfrac94$ khi $x=\dfrac12$.
b,
\(B=x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\\=(x^9-1)-(x^7-x^4)-(x^6-x^3)-(x^5-x^2)\\=[(x^3)^3-1]-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1)-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1-x^4-x^3-x^2)\\=(x^3-1)(x^6-x^4-x^2+1)\)
Thay $x=1$ vào $B$, ta được:
\(B=(1^3-1)(1^6-1^4-1^2+1)=0\)
Vậy $B=0$ khi $x=1$.
$Toru$
a) x2 - 2xy + y2 - 4m2 + 4mn - n2 = (x - y)2 - [(2m)2 - 2.2m.n + n2] = (x - y)2 - (2m - n)2
= [(x - y) - (2m - n)][(x - y) + (2m - n)] = (x - y - 2m + n)(x - y + 2m - n)
b) x2 - 4x2y2 + y2 + 2xy = x2 + 2xy + y2 - 4x2y2 = (x + y)2 - (2xy)2 = (x + y - 2xy)(x + y + 2xy)
c) x6 - y6 = (x3)2 - (y3)2 = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy + y2)(x + y)(x2 - xy - y2)
d) 25 - a2 + 2ab - b2 = 25 - (a2 - 2ab + b2) = 52 - (a - b)2 = (5 - a + b)(5 + a - b)
\(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(x^6-y^6=\left(x^2\right)^3-\left(y^2\right)^3=\left(x^2-y^2\right)\left(x^4-x^2y^2+y^4\right)\)