Phân tích thành nhân tử
a) a^6 - a^4 + 2a^3 + 2a^2
b) ( a + b )^3 - ( a - b )^3
c) x^2 - 7xy + 10y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này mk chưa hok tới!!!
54746746745764565465476467568457879797689685856
\(x^5-4x^3-5x\)
\(=x\left(x^4-4x^2-5\right)\)
\(=x\left(x^4-5x^2+x^2-5\right)\)
\(=x\left[x^2\left(x^2-5\right)+\left(x^2-5\right)\right]\)
\(=x\left(x^2+1\right)\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)\)
a/
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2.\)
=>\(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2-2\left(ac\right)^2\)
=>\(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ac\right)^2-4\left(ca\right)^2\)
áp dụng hằng đẳng thức \(a^2-b^2-c^2=a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ac\right)^2\) ta đc
\(\left(a^2-b^2+c^2\right)-4\left(ac\right)^2\)
=> \(\left(a^2-b^2+c^2-2ac\right)\left(a^2-b^2+c^2+2ac\right)\)
Mấy câu dễ mình làm trước nhé. Mấy câu khó hơn mình trình bày sau :)
1) 2x2 - 5xy - 3y2 = 2x2 + xy - 6xy - 3y2 = x( 2x + y ) - 3y( 2x + y ) = ( 2x + y )( x - 3y )
2) 7x2 + 3xy - 10y2 = 7x2 - 7xy + 10xy - 10y2 = 7x( x - y ) + 10y( x - y ) = ( x - y )( 7x + 10y )
3) x2 + 5x - 2 = ( x2 + 5x + 25/4 ) - 33/4 = ( x + 5/2 )2 - \(\left(\frac{\sqrt{33}}{2}\right)^2\)= \(\left(x+\frac{5}{2}-\frac{\sqrt{33}}{2}\right)\left(x+\frac{5}{2}+\frac{\sqrt{33}}{2}\right)\)
6) x4 + 324 = ( x4 + 36x2 + 324 ) - 36x2 = ( x2 + 18 )2 - ( 6x )2 = ( x2 - 6x + 18 )( x2 + 6x + 18 )
4) x8 + x7 + 1
= x8 + x7 + x6 - x6 + 1
= x6( x2 + x + 1 ) - ( x6 - 1 )
= x6( x2 + x + 1 ) - ( x3 - 1 )( x3 + 1 )
= x6( x2 + x + 1 ) - ( x - 1 )( x2 + x + 1 )( x3 + 1 )
= ( x2 + x + 1 )( x6 - ( x - 1 )( x3 + 1 ) ]
= ( x2 + x + 1 )( x6 - x4 + x3 - x + 1 )
5) x7 + x5 + 1
= x7 + x6 - x6 + x5 + 1
= x5( x2 + x + 1 ) - ( x6 - 1 )
= x5( x2 + x + 1 ) - ( x3 - 1 )( x3 + 1 )
= x5( x2 + x + 1 ) - ( x - 1 )( x2 + x + 1 )( x3 + 1 )
= ( x2 + x + 1 )[ x5 - ( x - 1 )( x3 + 1 ) ]
= ( x2 + x + 1 )( x5 - x4 + x3 - x + 1 )
7) x5 - 5x3 + 4x
= x5 - x3 - 4x3 + 4x
= x3( x2 - 1 ) - 4x( x2 - 1 )
= ( x2 - 1 )( x3 - 4x )
= ( x - 1 )( x + 1 )x( x2 - 4 )
= x( x - 1 )( x + 1 )( x - 2 )( x + 2 )
8) Xin hàng :)
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
a) \(6x^2-11xy+3y^2=6x^2-2xy-9xy+3y^2=2x.\left(3x-y\right)-3y.\left(3x-y\right)\)
= \(\left(3x-y\right).\left(2x-3y\right)\)
b) PP: dùng hệ số bất định
ta có: x^4 -3x^3+6x^2-5x+3=(x^2+ax-1)(x^2 +bx-3) (*)
=x^4 +bx^3-3x^2+ax^3 +(a+b)x^2 -3ax -x^2-bx+3
=x^4 +(b+a)x^3 +(a+b-3-1)x^2 -(3a+b)x +3
=> a+b=-3
a+b-4=6
3a+b=5
<=> a=7/2 ;b=13/2 thay vào (*) ta đc: x^4 -3x^3+6x^2-5x+3=(x^2+\(\frac{7}{2}\).x -1)(x^2 +\(\frac{13}{2}\).x -3)
Hay x^4 -3x^3+6x^2-5x+3= \(\frac{1}{4}.\left(2x^2+7x-2\right)\left(2x^2+13-6\right)\)
a, \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2=\left[\left(x+1\right)-\left(y-3\right)\right]^2\)
\(=\left(x+1-y+3\right)^2=\left(x-y+4\right)^2\)
b, \(a^2+b^2+2a-2b-2ab=\left(a^2-2ab+b^2\right)+\left(2a-2b\right)\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left[\left(a-b\right)+2\right]=\left(a-b\right)\left(a-b+2\right)\)
cái này dễ nhưng làm lâu lắm