K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

\(ĐKXĐ:\hept{\begin{cases}x-1\ge0\\x-x^2\ne0\end{cases}}\)   

\(\hept{\begin{cases}x\ge0+1\\x\cdot\left(1-x\right)\ne0\end{cases}}\)   

\(\hept{\begin{cases}x\ge1\\x\ne0\left(llđ\right)\\1-x\ne0\end{cases}}\)   ( luôn luôn đúng ) 

\(\hept{\begin{cases}x\ge1\\x\ne1-0\end{cases}}\)   

\(\hept{\begin{cases}x\ge1\\x\ne1\end{cases}}\)   

x > 1 

DD
27 tháng 6 2021

Điều kiện xác định của \(\frac{\sqrt{x-1}}{x-x^2}\)là: 

\(\hept{\begin{cases}x-1\ge0\\x-x^2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ne0,x\ne1\end{cases}}\Leftrightarrow x>1\).

P xác định khi \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{1}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}.\left(\sqrt{x}-1\right)\)

\(=\frac{x-1}{\sqrt{x}}\)

P xác định khi \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{1}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}.\left(\sqrt{x}-1\right)\)

\(=\frac{x-1}{\sqrt{x}}\)

23 tháng 9 2018

a) DK de P xác dinh : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

b) \(P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{1-x}+\frac{\left(\sqrt{x}-2\right)^2+3\sqrt{x}-x}{1-\sqrt{x}}\)

\(=\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{-\sqrt{x}+4}{1-\sqrt{x}}\)

\(=\frac{4}{1-\sqrt{x}}\)

c) de P > o thì \(1-\sqrt{x}>0\Rightarrow\sqrt{x}< 1\Rightarrow0< x< 1\)

9 tháng 6 2017

Đặt \(\sqrt{x}=a\) , a \(\ge0\) 

a , Khi đó biểu thức trở thành :

Q = \(\frac{2a-9}{a^2-5a+6}-\frac{a+3}{a-2}-\frac{2a+1}{3-a}\)

Đến đây làm như lớp 8 thôi

8 tháng 6 2017

bạn đặt \(\sqrt{x}=a\) , a> 0 

Thay \(\sqrt{x}=a\)  vô  biểu thức => rút gọn ra => thay trở lại  

8 tháng 6 2017

giải chi tiết giúp mình đc không ạ?

12 tháng 6 2019

b) \(M=\frac{2}{\sqrt{x}-3}\in Z\Leftrightarrow\sqrt{x}-3\) là ước của 2.

\(\Leftrightarrow\sqrt{x}-3\in\left\{\pm1,\pm2\right\}\Leftrightarrow\sqrt{x}\in\left\{1,2,3,4,5\right\}\)

\(\Leftrightarrow x\in\left\{1,4,16,25\right\}\)

Đối chiếu điều kiện ta có:

\(x\in\left\{1,16,25\right\}\)

12 tháng 6 2019

Để M là số nguyên thì \(\frac{2}{\sqrt{x}-3}\in Z\)    Suy ra \(\frac{2}{\sqrt{x}-3}=k\left(k\in N\right)\)

\(\Rightarrow\sqrt{x}-3=\frac{2}{k}\Leftrightarrow\sqrt{x}=\frac{2}{k}+3.\)\(\Rightarrow x=\left(\frac{2}{k}+3\right)^2\left(k\ne0\right).\)

Mà \(\sqrt{x}\ge0\Rightarrow\frac{2}{k}+3\ge0\Leftrightarrow\frac{2+3k}{k}\ge0\Leftrightarrow\hept{\begin{cases}k>0\\k\le-\frac{2}{3}\end{cases}\Leftrightarrow k\ne0\left(do-k\in Z\right).}\)

Lại theo ĐKXĐ ta có \(\hept{\begin{cases}\sqrt{x}\ne2\\\sqrt{x}\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{\sqrt{x}-3}\ne-2\\\frac{2}{\sqrt{x}-3}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}k\ne-2\\k\ne0\end{cases}.}}\)

Kết hợp lại ta có \(k\in Z,k\ne-2,k\ne0\)

Vậy để M là số nguyên thì \(x=\left(\frac{2}{k}+3\right)^2\)với \(k\in Z,k\ne-2,k\ne0.\)

Có sai chỗ nào mong mọi người chỉ cho .Cảm ơn nhiều 

P/S: Hầu hết các câu trả lời đều là tìm x nguyên , nhưng đề bài là tìm x thôi ạ! 

2 tháng 9 2018

a,

\(A\Leftrightarrow\)\(\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\left(\sqrt{x}\right)^2+2\sqrt{x}+1}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)^2}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)(1)

Để A xđ <=> \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\\\sqrt{x}-3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)

b , (1) <=> \(\left(\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)

<=> \(\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1-\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\)\(\times\frac{x-1}{\sqrt{x}-3}\)

<=> \(\frac{2}{x-1}\times\frac{x-1}{\sqrt{x}-3}\)

<=> \(\frac{2}{\sqrt{x}-3}\)

14 tháng 12 2017

a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

19 tháng 8 2018

\(a,ĐKXĐ:x\ne\sqrt{2};-\sqrt{2};x\ne4\)

\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{x-4}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}+\frac{-2-5\sqrt{x}}{x-4}\)

\(P=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{x-4}\)

\(P=\frac{3x-6\sqrt{x}}{x-4}\)

\(b;\)Để P<2

\(\Rightarrow3x-6\sqrt{x}< 2x-8\)

\(\Rightarrow3x-2x< -8+6\sqrt{x}\)

\(\Rightarrow x-6\sqrt{x}< -8\)

\(\Rightarrow\sqrt{x}\left(\sqrt{x}-6\right)< 8\)

Tìm x là xong

19 tháng 8 2018

a) \(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)\(\left(ĐKXĐ:x>4\right)\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{-2-5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

b) Ta có : \(P< 2\Leftrightarrow\frac{3\sqrt{x}}{\sqrt{x}+2}< 2\)

\(\Leftrightarrow\frac{3\sqrt{x}}{\sqrt{x}+2}-2< 0\)

\(\Leftrightarrow\frac{3\sqrt{x}}{\sqrt{x}+2}-\frac{2\sqrt{x}+4}{\sqrt{x}+2}< 0\)

\(\Leftrightarrow\frac{\sqrt{x}-4}{\sqrt{x}+2}< 0\)

Mà  \(\sqrt{x}-4< \sqrt{x}+2\)

\(\Rightarrow\hept{\begin{cases}\sqrt{x}-4< 0\\\sqrt{x}+2>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{x}< 4\\\sqrt{x}>-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 16\\x>4\end{cases}}\Leftrightarrow4< x< 16\)

Vậy ...