Cho abc là 3 cạnh của tam giác. Chứng minh rằng: a^2 - b^2 - c^2 + abc >0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này ta sẽ phải vận dụng linh hoạt hằng đẳng thức hiệu 2 bình phương là chính: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(4b^2c^2-\left(b^2+c^2-a^2\right)^2=\left(2bc\right)^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc-b^2-c^2+a^2\right).\left(2bc+b^2+c^2-a^2\right)\)
\(=\left(a^2+2bc-b^2-c^2\right)\left(2bc+b^2+c^2-a^2\right)=\left[a^2-\left(b^2-2bc+c^2\right)\right].\left[\left(b^2+2bc+c^2\right)-a^2\right]\)
\(=\left[a^2-\left(b-c\right)^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)\)
Vì a,b,c là độ dài 3 cạnh của tam giác nên theo bất đẳng thức tam giác:
+a+c > b => a+c-b > 0
+b+c > a=>b+c-a > 0
+a+b+c và b+c+a hiển hiên đều lớn hơn 0
Nên \(\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)>0\)
\(=>4b^2c^2-\left(b^2+c^2-a^2\right)^2>0\left(đpcm\right)\)
Sửa đề: cm A<0
\(A=\left(a^2-b^2+c^2\right)^2-4a^2c^2\)
\(=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2\)
\(=\left(a^2-b^2+c^2+2ac\right)\left(a^2-b^2+c^2-2ac\right)\)
\(=\left[\left(a+c\right)^2-b^2\right]\left[\left(a-c\right)^2-b^2\right]\)
\(=\left(a+c-b\right)\left(a+c+b\right)\left(a-c-b\right)\left(a-c+b\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên: a+b+c > 0
a+c>b => a+c-b > 0
c+b>a=>a-(c+b)=a-c-b < 0
a+b>c => a+b-c > 0
Do đó: (a+c-b)(a+b+c)(a-c-b)(a-c+b) < 0 hay A<0 (đpcm)
1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)
nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x
2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)
mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha
Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai
Câu 2 sai đề. chứng minh như sau;
Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)
\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\)
Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)
\(\Leftrightarrow0,25>0,5\) => vô lí
Biểu thức đề bài cần chứng minh là: \(a^2-b^2-c^2+abc>0\)
Biểu thức đó cũng có thể viết thành: \(a^2+\left(-b\right)^2+\left(-c\right)^2+abc\)
Mà ta biết, một số dù dương hay âm khi bình phương lên cũng sẽ thành một số luôn lớn hơn hoặc bằng 0, áp dụng vào biểu thức trên, ta có
\(a^2\ge0;\left(-b\right)^2\ge0;\left(-c\right)^2\ge0\)
Hơn nữa a;b;c lại là cạnh của tam giác, cạnh của tam giác luôn có số đo dương , vậy cả ba số a;b;c khi bình phương lên đều lớn hơn 0
\(abc\) lại là tích của ba số dương lớn hơn 0 nên biểu thức: \(a^2+\left(-b\right)^2+\left(-c\right)^2+abc\)>0