\(\frac{2}{x}=\frac{-4}{y}\)
\(\text{và}-3x+5y=130\)
Tìm x và y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
suy ra: \(x=2k;\)\(y=3k;\)\(z=4k\)
Ta có: \(x^2+y^2+z^2=116\)
<=> \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)
<=> \(29k^2=116\)
<=> \(k^2=4\)
<=> \(k=\pm2\)
tự làm nốt
a, x/3=y/4 b, 2x=5y
=> 2x/6=y/4=2x-4/6-4=2/2=1 => x/5=y/2 => 3x/15=y/2=3x-y/15-2=22/13
+, x/3=1 => x=3 +,2x=22/13 => x=11/13
+, y/4=1 => y=4 +,5y=22/13 => y=22/65
Vậy .... Vậy ...........
c, x/y=3/5 d, x/2=y/5
=> x/3=y/5 => 2x/4=y/5
=>3x/9=2y/10 => 2x+y/4+5=18/9=2
=> 3x+2y/9+10=38/19=2 +,x/2=2 => x=4
+,x/3=2 => x=6 +,y/5=2 => y=10
Vậy ........... Vậy ............
+,y/5=2 => y=10
a )
Ta có :
\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)
và \(x+y-z=69\)
ADTCDTSBN , ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)
Vậy ...
b )
Ta có :
\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)
\(\Rightarrow x=14,4.3:2=21,6\)
và \(3x+5y-7z=30\)
Thay vào làm tiếp :
c )
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN )
\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)
\(=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)
Vậy ...
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
1)
a) 3x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{3}\)\(\Rightarrow\frac{x}{8}=\frac{y}{6}\)( 1 )
5y = 6z \(\Rightarrow\frac{y}{6}=\frac{z}{5}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{8}=\frac{y}{6}=\frac{z}{5}=\frac{x+y+z}{8+6+5}=\frac{1}{19}\)
\(\Rightarrow x=\frac{8}{19};y=\frac{6}{19};z=\frac{5}{19}\)
b) \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\Rightarrow\frac{3x-3}{9}=\frac{4y-8}{16}=\frac{5z-15}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3x-3}{9}=\frac{4y-8}{16}=\frac{5z-15}{25}=\frac{\left(3x-3\right)+\left(4y-8\right)+\left(5z-15\right)}{9+16+25}=\frac{-25}{50}=\frac{-1}{2}\)
\(\Rightarrow x=\frac{-1}{2};y=0;z=\frac{1}{2}\)
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
a)Vì \(x:y:z=2:3:\left(-4\right)\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y+z}{2-3+-4}=\frac{-125}{-5}=25\)
\(\Rightarrow\begin{cases}\frac{x}{2}=25\\\frac{y}{3}=25\\\frac{z}{-4}=25\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=50\\y=75\\z=-100\end{cases}\)
Vậy x=50;y=75;z=-100
d)Vì 2x=3y\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)(1)
5y=7z\(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)(2)
Từ (1) và (2) suy ra:\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\begin{cases}\frac{x}{21}=2\\\frac{y}{14}=2\\\frac{z}{10}=2\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=42\\y=28\\z=20\end{cases}\)
Ta có:\(\frac{x}{y}=\frac{3}{4}\)=>\(\frac{x}{3}=\frac{y}{4}\)=>\(\frac{-3x}{-9}=\frac{5y}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{-3x}{-9}=\frac{5y}{20}=\frac{-3x+5y}{-9+20}=\frac{33}{11}=3\)
=>\(\frac{x}{3}=3\)=>x=9
\(\frac{y}{4}=3\)=>y=12
Vậy x=9,y=12
\(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4};\frac{x}{3}=\frac{-3x}{-9};\frac{y}{4}=\frac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{-3x}{-9}=\frac{5y}{20}=\frac{-3x+5y}{-9+20}=\frac{33}{11}=3\)
\(\frac{x}{3}=3\Rightarrow x=3.3=9\)
\(\frac{y}{4}=3\Rightarrow y=3.4=12\)
1) \(\frac{x}{3}=\frac{y}{2}và2x+5y=32\)
Ta có \(\frac{x}{3}=\frac{y}{2}=\frac{2x+5y}{2.3+5.2}=32\)
=> x=96
y=64
này bn, ko có ăn chùa đâu. ng` ta lm rồi thì phải li ke chứ
\(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\)
theo dãy tỉ số bằng nhau:
=> \(\frac{3x}{3.3}=\frac{5y}{5.4}=\frac{3x+5y}{9+20}=\frac{33}{29}\)
=> x/3=33/29 => x=33/29 . 3 = 99/29
=> y/4= 33/29 => y=33/29 . 4 =132/29
số xấu , xem lại đề
Theo bài ra ta có
\(\frac{x}{y}=\frac{3}{4}\Rightarrow
\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{3x}{9}=\frac{5y}{20}\)và 3x+5y=33
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{3x}{9}=\frac{5y}{20}=\frac{3x+5y}{9+20}=\frac{33}{29}\)
=> \(\frac{3x}{9}=\frac{33}{29}\Rightarrow3x=\frac{297}{29}\Rightarrow x=\frac{99}{29}\)
\(\frac{5y}{20}=\frac{33}{29}\Rightarrow5y=\frac{660}{29}\Rightarrow y=\frac{132}{29}\)
Nếu đúng tick đúng cho mình nha
Ta có \(\frac{2}{x}=-\frac{4}{y}\)
=> \(\frac{x}{2}=\frac{y}{-4}\)
Đặt \(\frac{x}{2}=\frac{y}{-4}=k\Rightarrow\hept{\begin{cases}x=2k\\y=-4k\end{cases}}\)
Khi đó -3x + 5y = 130
<=> -3.2k + 5.(-4k) = 130
<=> -26k = 130
=> k = -5
=> x = 2.(-5) = -10 ;
y = -4.(-5) = 20
ta có: 2/x = -4/y
=> x/2 = y/-4
đặt x/2=y/-4=k
=> x=2k; y=-4k
thay vào -3x+5y=130 ta có:
-3.2k + 5.(-4k)=130
-6k-20k=130
-26k=130
k=-5
=> x=2.(-5)=-10; y=(-4).(-5)=20
vậy x=-10;y=20
chúc b học tốt