Cho 19 số hữu tỉ trong đó có tích của 3 số bất kỳ là âm chứng minh 19 số đó đều là âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi các số cần tìm theo thứ tự từ bé -> lớn là : a1 ; a2 ; a3 ; ... a100
- Ta có : a1 ; a2 ; a3 ; a100 < 0
=> Cả 3 số cùng âm
hoặc a1 âm và a2;a100 dương ( không thể theo thứ tự khác vì từ đầu ta đã nói là từ bé -> lớn )
+ ; a2 là số dương => a3 ; a4 ; a100 đều là số dương ( vì đã từ bé -> lớn ) -> mâu thuẫn vì tích 3 số bất kì đều < 0
=> Trường hợp ( a100 là số âm )
=> 100 số đề là số âm.
- Tích của 2 số âm là 1 số dương mà có 50 cặp => tích 100 số trên là số dương
a) Tổng của 4 số là 1 số dương nên chắc chắn trong 4 số đó có 1 số dương
Bớt số dương đó ra => còn lại 12 số . Chia 12 số đó thành 3 nhóm, mỗi nhóm có 4 chữ số
=> Giá trị mỗi nhóm là số dương => Tổng 12 số đó dương
Cộng với số dương đã bớt ra => tổng của 13 số đã cho dương
- Gọi các số cần tìm theo thứ tự từ bé -> lớn là
- Ta có
=> Cả 3 số cùng âm
hoặc âm và dương ( không thể theo thứ tự khác vì từ đầu ta đã nói là từ bé -> lớn )
+; là số dương => đều là số dương ( vì đã từ bé -> lớn ) -> mâu thuẫn vì tích 3 số bất kì đều < 0
=> Trường hợp ( là số âm )
=> 100 số đề là số âm.
- Tích của 2 số âm là 1 số dương mà có 50 cặp => tích 100 số trên là số dương
Gọi các số đó là: \(x_1;x_2;...;x_{100}\)
Giả dụ các số đó có thứ tự từ nhỏ đến lớn: \(x_1< x_2< ...< x_{100}\)
Ta có: \(x_1.x_2.x_{100}< 0\)
\(\Rightarrow x_1\left(-\right);x_2;x_{100}\left(+\right)\) hoặc \(x_1;x_2;x_{100}\left(-\right)\)
Trường hợp 1: \(x_1\left(-\right);x_2;x_{100}\left(+\right)\)
Do \(x_2;x_{100}\left(+\right)\) mà \(x_2< ...< x_{100}\)
\(\Rightarrow x_2;...;x_{100}\) đều là số dương
\(\Rightarrow x_2.x_3.x_4>0\) (Mâu thuẫn với đề.)
Trường hợp 2: \(x_1;x_2;x_{100}\left(+\right)\)
Do \(x_2< ...< x_{100}\)
\(\Rightarrow x_1;...;x_{100}\) đều là số âm
Vậy tất cả 100 số đó đều là số âm.
TÍch của 3 số bất kì là 1 số âm => Trong chúng có ít nhất 1 số nguyên âm.
=> Tích của 12 số còn lại là số dương
Bỏ số âm đó ra, còn 12 số hữu tỉ bất kì , chia thành 4 nhóm, mỗi nhóm 3 số
Trong 4 nhóm đó có ít nhất 4 số âm
Bỏ 4 số âm đó ra, còn 8 số hữu tỉ bất kì, chia thành 2 nhóm, mỗi nhóm 3 số và còn thừa 2 số
Trong 2 nhóm đó có ít nhất 2 số âm
Bỏ 2 số âm đó ra, còn 6 số hữu tỉ bất kì, chia thành 2 nhóm ,mỗi nhóm 3 số
Trong 2 nhóm đó có ít nhất 2 số âm
Bỏ 2 số âm đó ra, còn 4 số hữu tỉ kì, chia thành 1 nhóm mỗi nhóm 3 số
Trong 1 nhóm đó có ít nhất 1 số âm
Bỏ 1 số âm đó ra, còn 3 số hữu tỉ kì, chia thành 1 nhóm mỗi nhóm 3 số
Trong 1 nhóm đó có ít nhất 1 số âm
Bỏ 1 số âm đó ra, còn 2 số hữu tỉ kì
Ta có 11 số âm, mà tích của 12 số là dương
=> Ta đc 12 số âm
Mà số đầu tiên bỏ ra là số âm => Tất cả các số đó đều là số âm
TÍch của 3 số bất kì là 1 số âm => Trong chúng có ít nhất 1 số nguyên âm.
=> Tích của 12 số còn lại là số dương
Bỏ số âm đó ra, còn 12 số hữu tỉ bất kì , chia thành 4 nhóm, mỗi nhóm 3 số
Trong 4 nhóm đó có ít nhất 4 số âm
Bỏ 4 số âm đó ra, còn 8 số hữu tỉ bất kì, chia thành 2 nhóm, mỗi nhóm 3 số và còn thừa 2 số
Trong 2 nhóm đó có ít nhất 2 số âm
Bỏ 2 số âm đó ra, còn 6 số hữu tỉ bất kì, chia thành 2 nhóm ,mỗi nhóm 3 số
Trong 2 nhóm đó có ít nhất 2 số âm
Bỏ 2 số âm đó ra, còn 4 số hữu tỉ kì, chia thành 1 nhóm mỗi nhóm 3 số
Trong 1 nhóm đó có ít nhất 1 số âm
Bỏ 1 số âm đó ra, còn 3 số hữu tỉ kì, chia thành 1 nhóm mỗi nhóm 3 số
Trong 1 nhóm đó có ít nhất 1 số âm
Bỏ 1 số âm đó ra, còn 2 số hữu tỉ kì
Ta có 11 số âm, mà tích của 12 số là dương
=> Ta đc 12 số âm
Mà số đầu tiên bỏ ra là số âm => Tất cả các số đó đều là số âm