.Phiền các bạn ><
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Những câu hỏi liên quan
TT
1
![](https://rs.olm.vn/images/avt/0.png?1311)
30 tháng 1 2017
|-x| < 5
<=> |x| < 5
=> -5 < -x < 5
=> x = {-4 ; -3 ; - 2; -1 ; 0 ; 1 ; 2 ; 3 ; 4}
=> (-4) + (-3) + (-2) + ...... + 4
= [(-4) + 4] + [(-3) + 3] + ... + 0
= 0 + 0 +... + 0
= 0
![](https://rs.olm.vn/images/avt/0.png?1311)
VH
4 tháng 7 2017
22 x 22 lần = 484 lần - 10 x 10 từ bảng cửu chương - các bảng 1x & 2x & 10x = 318 lần hỏi "Cụ" Google :/
![](https://rs.olm.vn/images/avt/0.png?1311)
A
28 tháng 7 2017
Bạn muốn đánh gttđ thì nhấn giữ phím alt rồi nhấn lần lượt 1,7,9 trên bàn phím nhỏ ở bên phải phía num lock
a.
│3x+9│ ≥ 0 và │5y-12│ ≥ 0
dấu "=" xảy ra khi 3x+9=0 hay x=3 và 5y-12=0 hay y=2,4
b
tương tự x=4/3 và y=5/3
VT
28 tháng 7 2017
câu a thì đánh giá nó lớn =0, câu b cũng thế, bộ cậu định để mọi người làm bài tập về nhà cho à
BH
3
![](https://rs.olm.vn/images/avt/0.png?1311)
ST
5
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
16 tháng 3 2018
People were warned to stay _______ the streets
a.out b.of c.off d.on
a, \(P=\left(1+\frac{1}{x-1}\right)\left(\frac{x^2-7}{x^2-4x+3}+\frac{1}{x-1}+\frac{1}{3-x}\right)\)ĐK : \(x\ne1;3\)
\(=\left(\frac{x}{x-1}\right)\left(\frac{x^2-7+x-3-x+1}{\left(x-1\right)\left(x-3\right)}\right)=\frac{x}{x-1}.\frac{x^2-9}{\left(x-1\right)\left(x-3\right)}=\frac{x\left(x+3\right)}{\left(x-1\right)^2}\)
b, Ta có : \(\left|x+2\right|=5\)
TH1 : \(x+2=5\Leftrightarrow x=3\)( ktmđk )
TH2 : \(x+2=-5\Leftrightarrow x=-7\)( tmđk )
Thay x = -7 vào biểu thức P ta được : \(P=\frac{-7\left(-7+3\right)}{\left(-7-1\right)^2}=\frac{49-21}{64}=\frac{28}{64}=\frac{7}{16}\)
c, Ta có : \(P>1\Rightarrow\frac{x\left(x+3\right)}{\left(x-1\right)^2}>1\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{\left(x-1\right)^2}-1>0\Leftrightarrow\frac{x^2+3x-x^2+2x-1}{\left(x-1\right)^2}>0\)
\(\Leftrightarrow\frac{5x-1}{\left(x-1\right)^2}>0\Rightarrow5x-1>0\Leftrightarrow x>\frac{1}{5}\)
\(P=\left(1+\frac{1}{x-1}\right)\left(\frac{x^2-7}{x^2-4x+3}+\frac{1}{x-1}+\frac{1}{3-x}\right)\)
\(=\left(\frac{x-1+1}{x-1}\right)\left(\frac{x^2-7}{\left(x-3\right)\left(x-1\right)}+\frac{x-3}{\left(x-1\right)\left(x-3\right)}-\frac{x-1}{\left(x-1\right)\left(x-\right)}\right)\)
\(=\frac{x}{x-1}.\frac{x^2-7+x-3-x+1}{\left(x-3\right)\left(x-1\right)}\)
\(=\frac{x}{x-1}.\frac{x^2+5}{\left(x-1\right)\left(x-1\right)}\)
??