cho a,b\(\in\)N* t/m
a\(^2\)+\(b^2\)+1\(⋮\)ab
tinh \(\frac{a^2+b^2+1}{ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Chưa đủ dữ kiện để tính. Từ $a+b=2$ bạn chỉ có thể tính $a^2+b^2+2ab$
Bài 2:
\(a^2+b^2-ab-a-b+1=0\)
\(\Leftrightarrow 2a^2+2b^2-2ab-2a-2b+2=0\)
\(\Leftrightarrow (a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)=0\)
\(\Leftrightarrow (a-b)^2+(a-1)^2+(b-1)^2=0\)
Vì \((a-b)^2\geq 0; (a-1)^2\geq 0;(b-1)^2\geq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow (a-b)^2+(a-1)^2+(b-1)^2\geq 0\)
Dấu "=" xảy ra khi \((a-b)^2=(a-1)^2=(b-1)^2=0\Leftrightarrow a=b=1\)
Bài 3:
\(x+y=x^3+y^3=(x+y)(x^2-xy+y^2)\)
\(\Leftrightarrow (x+y)(x^2-xy+y^2-1)=0\)
\(\Rightarrow \left[\begin{matrix} x+y=0\\ x^2-xy+y^2-1=0\end{matrix}\right.\).
Nếu $x+y=0$ \(\Rightarrow x^2+y^2=x+y=0\)
Mà \(x^2\geq 0, y^2\geq 0, \forall x,y\) nên để tổng của chúng bằng $0$ thì \(x^2=y^2=0\Leftrightarrow x=y=0\) (thỏa mãn)
Nếu \(x^2-xy+y^2-1=0\)
\(\Leftrightarrow (x^2+y^2)-xy-1=0\)
\(\Leftrightarrow x+y-xy-1=0\)
\(\Leftrightarrow (x-1)(1-y)=0\) \(\Rightarrow \left[\begin{matrix} x=1\\ y=1\end{matrix}\right.\)
\(x=1\Rightarrow 1+y=1+y^2=1+y^3\)
\(\Leftrightarrow y=y^2=y^3\Rightarrow y=0\) hoặc $y=1$
\(y=1\Rightarrow x+1=x^2+1=x^3+1\)
\(\Leftrightarrow x=x^2=x^3\Rightarrow x=0\) hoặc $x=1$.
Vậy $(x,y)=(0,0); (1,0), (0,1), (1,1)$
\(P=\sum\frac{1}{\sqrt{a^2+b^2-ab+b^2+b^2+1}}\le\sum\frac{1}{\sqrt{ab+b^2+2b}}=\sum\frac{2}{\sqrt{4b\left(a+b+2\right)}}\)
\(\Rightarrow P\le\sum\left(\frac{1}{4b}+\frac{1}{a+b+1+1}\right)\le\sum\left(\frac{1}{4b}+\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+1+1\right)\right)\)
\(\Rightarrow P\le\frac{3}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3}{8}\le\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
2.
\(1\ge\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{9}{3+a+b+c}\)
\(\Rightarrow a+b+c+3\ge6\Rightarrow a+b+c\ge6\)
\(P=\sum\frac{a^3}{a^2+ab+b^2}=\sum\left(a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\right)\ge\sum\left(a-\frac{ab\left(a+b\right)}{3ab}\right)\)
\(\Rightarrow P\ge\sum\left(\frac{2a}{3}-\frac{b}{3}\right)=\frac{1}{3}\left(a+b+c\right)\ge\frac{6}{3}=2\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Ta có : \(ab\le\frac{a^2+b^2}{2}\)
\(\Rightarrow a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)
Lại có : \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}b^2+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)
\(\Rightarrow\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}\left(\frac{1}{a}+\frac{5}{b}+2\right)\)
Khi đó :
\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)
Dấu " = " xay ra khi a=b=c=1
Vậy \(P_{Max}=\frac{3}{2}\) khi a=b=c=1
\(B=\frac{a+b}{ab}+\frac{2}{a+b}=\frac{a+b}{2ab}+\frac{a+b}{2ab}+\frac{2}{a+b}\)
\(B\ge\frac{2\sqrt{ab}}{2ab}+2\sqrt{\frac{2\left(a+b\right)}{2ab\left(a+b\right)}}=3\)
\(B_{min}=3\) khi \(a=b=1\)
Câu b thì đề chắc phải cho a;b;c là 3 cạnh của 1 tam giác để đảm bảo các mẫu thức dương chứ?
Đặt \(\left\{{}\begin{matrix}b+c-a=x\\a+c-b=y\\a+b-c=z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)
\(T=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}\)
\(T=\frac{2y}{x}+\frac{2z}{x}+\frac{9x}{2y}+\frac{9z}{2y}+\frac{8x}{z}+\frac{8y}{z}\)
\(T=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{8y}{z}+\frac{9z}{2y}\)
\(T\ge2\sqrt{\frac{18xy}{2xy}}+2\sqrt{\frac{16xz}{xz}}+2\sqrt{\frac{72yz}{2yz}}=26\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3x=2y\\z=2x\\4y=3z\end{matrix}\right.\)
\(P=\left(\frac{a}{b}+\frac{b}{a}\right)^2-\left(\frac{a}{b}+\frac{b}{a}\right)-1\)
Đặt \(t=\frac{a}{b}+\frac{b}{a}\Rightarrow t\in(-\infty;-2]\cup[2;+\infty)\)
\(f\left(t\right)=t^2-t-1\)
\(-\frac{b}{2a}=\frac{1}{2}\notin(-\infty;-2]\cup[2;+\infty)\)
\(f\left(-2\right)=5\) ; \(f\left(2\right)=1\)
\(\Rightarrow P_{min}=1\) khi \(t=2\Leftrightarrow\frac{a}{b}+\frac{b}{a}=2\Leftrightarrow a=b\)
\(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=b^2+2bc+c^2\\b^2=a^2+2ac+c^2\\c^2=a^2+2ab+b^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2+c^2-a^2=-2bc\\a^2+c^2-b^2=-2ac\\a^2+b^2-c^2=-2ab\end{matrix}\right.\Rightarrow P=\frac{1}{-2bc}+\frac{1}{-2ac}+\frac{1}{-2ab}=\frac{a+b+c}{-2abc}=0\)
a) \(P=\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2+c^2-b^2}\) ( Sửa đề )
\(P=\frac{1}{\left(b+c\right)^2-2ab-a^2}+\frac{1}{\left(a+b\right)^2-2ab-c^2}+\frac{1}{\left(a+c\right)^2-2ac-b^2}\)
Vì a + b + c = 0
Nên a + b = -c
=> ( a + b )2 = (-c)2 = c2
Tương tự: ( b + c )2 = a2 và ( a + c )2 = b2
\(\Rightarrow P=\frac{1}{a^2-2bc-a^2}+\frac{1}{c^2-2ab-c^2}+\frac{1}{b^2-2ac-b^2}\)
\(P=\frac{1}{-2bc}+\frac{1}{-2ab}+\frac{1}{-2ac}\)
\(P=\frac{a+b+c}{-2abc}=\frac{0}{-2abc}=0\)
Bài 1:
Gọi tọa độ của \(A=(0,0,a)\) và \(B=(m,n,p)\)
Vì $(P)$ vuông góc với $(d)$ nên \(\overrightarrow {n_P}=\overrightarrow {u_d}=(2,-1,1)\) kết hợp với $(P)$ chứa $A$ nên PTMP: \((P):2x-y+z-a=0\)
Ta có \(B\in (P)\Rightarrow 2m-n+p-a=0(1)\)
Mặt khác \(B\in (d')\Rightarrow \frac{m-1}{1}=\frac{n}{2}=\frac{p+2}{1}=t\Rightarrow \left\{\begin{matrix} m=t+1\\ n=2t\\ p=t-2\end{matrix}\right.\)
Thay vào $(1)$ ta thu được $t=a$
\(\Rightarrow AB=\sqrt{m^2+n^2+(p-a)^2}=\sqrt{(a+1)^2+(2a)^2+4}=\sqrt{5a^2+2a+5}\geq \frac{2\sqrt{30}}{5}\Leftrightarrow a=\frac{-1}{5}\)
Có nghĩa là để $AB$ min thì $a=\frac{-1}{5}$
Vậy PTMP: \(2x-y+z-\frac{1}{5}=0\)
Câu 2:
Thay toạ độ $A$ và $B$ vào $(P)$ có \([3.1-4(-1)+2-1](3.3-4.0+1-1)>0\) nên $A,B$ cùng phía so với $(P)$
Lấy $A'$ đối xứng với $A$ qua $(P)$ \(\Rightarrow MA=MA'\Rightarrow MA+MB=MA'+MB\geq A'B\)
Do đó \((MA+MB)_{\min}\Leftrightarrow A',M,B\) thẳng hàng
Biểu thị $(d)$ là đường thẳng chứa đoạn $AA'$.
Hiển nhiên \((d)\perp (P)\Rightarrow \overrightarrow{u_d}=\overrightarrow {n_P}=(3,-4,1)\)
Kết hợp với $A\in (d)$ nên \(d:\frac{x-1}{3}=\frac{y+1}{-4}=\frac{z-2}{1}=t\)
Khi đó gọi \(H\equiv AA'\cap (P)\). Dễ có \(H=(\frac{1}{13},\frac{3}{13},\frac{22}{13})\)
Lại có $H$ là trung điểm của $AA'$ nên tọa độ của $A'$ là
\(\left\{\begin{matrix} x_{A'}=2x_H-x_A=\frac{-11}{13}\\ y_{A'}=2y_H-y_A=\frac{19}{13}\\ z_{A'}=2z_H-z_A=\frac{18}{13}\end{matrix}\right.\)
Khi đó ta dễ dàng viết được PTĐT chứa $A'B$ là \(\frac{13(x-3)}{50}=\frac{13y}{19}=\frac{13(z-1)}{5}\)
Tọa độ của $M$ là nghiệm của hệ
\(\left\{\begin{matrix} \frac{13(x-3)}{50}=\frac{13y}{19}=\frac{13(z-1)}{5}\\ 3x-4y+z-1=0\end{matrix}\right.\Rightarrow M(\frac{-213}{79},\frac{-171}{79},\frac{34}{79})\)
.