Giải phương trình:
\(\left(4-x^2\right)\left(\sqrt{3x+1}-3+x\right)=0\)\(0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
$x^2-11=0$
$\Leftrightarrow x^2=11$
$\Leftrightarrow x=\pm \sqrt{11}$
b. $x^2-12x+52=0$
$\Leftrightarrow (x^2-12x+36)+16=0$
$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)
Vậy pt vô nghiệm.
c.
$x^2-3x-28=0$
$\Leftrightarrow x^2+4x-7x-28=0$
$\Leftrightarrow x(x+4)-7(x+4)=0$
$\Leftrightarrow (x+4)(x-7)=0$
$\Leftrightarrow x+4=0$ hoặc $x-7=0$
$\Leftrightarrow x=-4$ hoặc $x=7$
d.
$x^2-11x+38=0$
$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$
$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)
Vậy pt vô nghiệm
e.
$6x^2+71x+175=0$
$\Leftrightarrow 6x^2+21x+50x+175=0$
$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$
$\Leftrightarrow (3x+25)(2x+7)=0$
$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$
$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$
c.
ĐKXĐ: \(\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)
\(\Leftrightarrow x+4-2\sqrt[]{\left(\dfrac{x+2}{x-1}\right)^2\left(\dfrac{x-1}{x+2}\right)}=0\)
\(\Leftrightarrow x+4-2\sqrt[]{\dfrac{x+2}{x-1}}=0\)
\(\Leftrightarrow x+4=2\sqrt[]{\dfrac{x+2}{x-1}}\) (\(x\ge-4\))
\(\Leftrightarrow x^2+8x+16=\dfrac{4\left(x+2\right)}{x-1}\)
\(\Rightarrow x^3+7x^2+4x-24=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+4x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2+2\sqrt{3}\\x=-2-2\sqrt{3}\left(loại\right)\end{matrix}\right.\)
a.
\(\Leftrightarrow2x^2-11x+21=3\sqrt[3]{4\left(x-1\right)}\)
Do \(2x^2-11x+21=2\left(x-\dfrac{11}{4}\right)^2+\dfrac{47}{8}>0\Rightarrow3\sqrt[3]{4\left(x-1\right)}>0\Rightarrow x-1>0\)
Ta có:
\(VT=2x^2-11x+21-3\sqrt[3]{4x-4}=2\left(x^2-6x+9\right)+x+3-3\sqrt[3]{4\left(x-1\right)}\)
\(=2\left(x-3\right)^2+x+3-3\sqrt[3]{4\left(x-1\right)}\)
\(\Rightarrow VT\ge x+3-3\sqrt[3]{4\left(x-1\right)}=\left(x-1\right)+2+2-3\sqrt[3]{4\left(x-1\right)}\)
\(\Rightarrow VT\ge3\sqrt[3]{\left(x-1\right).2.2}-3\sqrt[3]{4\left(x-1\right)}=0\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\x-1=2\\\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Vậy pt có nghiệm duy nhất \(x=3\)
Ta có : (x + 1)(x + 2)(x + 3)(x + 4) = 3x2
=> [(x + 1)(x + 4)][(x + 2)(x + 3)] = 3x2
=> (x2 + 5x + 4) (x2 + 5x + 6) = 3x2
Đặt x2 + 5x + 5 = a
Thay vào biểu thức ta có : (a - 1)(a + 1) = 3x2
<=> a2 - 1 = 3a2
<=> (x2 + 5x + 5)2 = 3x2
<=> x4 + 10x2 + 15 = 3x2
=> x4 + 10x2 + 15 - 3x2 = 0
<=> x4 + 7x2 + 15 = 0
<=> (x2 + 3,5)2 + 2,75 = 0
=> sai đề
\(\left(4-x^2\right)\left(\sqrt{3x+1}-3+x\right)=0\)\(\left(đk:x\ge-\frac{1}{3}\right)\)
\(\Leftrightarrow\left(2-x\right)\left(2+x\right)\left(\sqrt{3x+1}-3+x\right)=0\)
TH1: 2 - x = 0 <=> x = 2 (t/m)
TH2: 2 + x = 0 <=> x=-2(t/m)
TH3 : \(\sqrt{3x+1}-3+x=0\)
\(\Leftrightarrow\sqrt{3x+1}=3-x\)
\(\Leftrightarrow3x+1=9-6x+x^2\)
\(\Leftrightarrow x^2-9x+8=0\)
\(\Leftrightarrow\left(x-8\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=8\\x=1\end{cases}}\)(t/m)