với những giá trị Z nào của x thì giá trị của biểu thức sau :
9-2x phần x-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để $P=\frac{9-2x}{x-3}$ nguyên thì:
$9-2x\vdots x-3$
$\Leftrightarrow 3-2(x-3)\vdots x-3$
$\Leftrightarrow 3\vdots x-3$
Khi đo $x-3$ là ước của $3$
$\Leftrightarrow x-3\in\left\{\pm 1; \pm 3\right\}$
$\Leftrightarrow x\in \left\{4; 2; 6; 0\right\}$
Ta có: 3 x 2 + 2x -1 = 2 3 x + 3 ⇔ 3 x 2 + 2x - 2 3 x -3 -1 = 0
⇔ 3 x 2 + (2 - 2 3 )x -4 =0 ⇔ 3 x 2 + 2(1 - 3 )x -4 = 0
∆ ' = b ' 2 – ac= 1 - 3 2 - 3 (-4) =1 - 2 3 +3 +4 3
= 1 + 2 3 +3 = 1 - 3 2 > 0
Vậy với x= 2 hoặc x = (-2 3 )/3 thì giá trị của hai biểu thức trên bằng nhau
Ta có: x 2 - 2 3 x - 3 = 2 x 2 +2x + 3
⇔ x 2 - 2 3 x - 3 - 2 x 2 -2x - 3 =0
⇔ x 2 +2x +2 3 x +2 3 =0
⇔ x 2 + 2(1 + 3 )x + 2 3 =0
∆ ' = b ' 2 – ac= 1 + 3 2 – 1. 2 3 = 1 + 2 3 + 3 -2 3 = 4 > 0
∆ ' = 4 =2
Vậy với x=1 - 3 hoặc x = - 3 - 3 thì giá trị của hai biểu thức trên bằng nhau
Với những giá trị nào của x thì giá trị của hai biểu thức sau bằng nhau? -2 2 x – 1 và 2 x 2 + 2x +3
Ta có: -2 2 x – 1 = 2 x 2 + 2x +3 ⇔ 2 x 2 +2x + 3 + 2 2 x + 1=0
⇔ 2 x 2 + 2(1 + 2 )x +4 =0
∆ ' = b ' 2 – ac= 1 + 2 2 - √2 .4= 1+2 2 +2 - 4 2
= 1-2 2 +2 = 2 - 1 2 > 0
Vậy với x= - 2 hoặc x = -2 thì giá trị của hai biểu thức trên bằng nhau
Từ giả thiết suy ra (x + 1)2 - 4 ≤ (x - 3)2
Û x2 + 2x + 1 - 4 ≤ x2 - 6x + 9
Û x2 + 2x + 1 - 4 - x2 + 6x - 9 ≤ 0
Û 8x ≤ 12
Û x ≤ 3/2
Vậy x ≤ 3/2là giá trị cần tìm.
Đáp án cần chọn là: C
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
sssssssssssssssss
bạn nào trả lơif giup mình đi mình đang cần gấp lắm