K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

Ta có: \(9a^2-b^2=0\Rightarrow\left(3a-b\right)\left(3a+b\right)=0\Rightarrow\left\{{}\begin{matrix}3a-b=0\\3a+b=0\end{matrix}\right.\)

\(9a^3-\dfrac{1}{3}b^3=\dfrac{1}{3}\left(27a^3-b^3\right)=\dfrac{1}{3}\left(3a-b\right)\left(9a^2+3ab+b^2\right)=\dfrac{1}{3}.0.\left(9a^2+3ab+b^2\right)=0\)

13 tháng 12 2016

Ngoài http://olm.vn/hoi-dap/question/779981.html còn cách khác

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(9a^3+3a^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow A\le\text{∑}\frac{a\left(\frac{1}{9a}+\frac{1}{3}+c\right)}{\left(a+b+c\right)^2}=\text{∑}\left(\frac{1}{9}+\frac{a}{3}+ac\right)\)

\(=\frac{1}{3}+\frac{a+b+c}{3}+\text{∑}ab\le\frac{1}{3}+\frac{1}{3}+\frac{\left(a+b+c\right)^2}{3}=1\)

Dấu "=" khi \(a=b=c=\frac{1}{3}\)

13 tháng 12 2016

a.b.c=1 thật hả. Rắc rối thế. Để nghĩ tiếp

13 tháng 12 2016

Áp dụng BĐT AM-GM ta có:

\(9a^3+\frac{1}{3}+\frac{1}{3}\ge3\sqrt[3]{9a^3\cdot\frac{1}{3}\cdot\frac{1}{3}}=3a\)

\(3b^2+\frac{1}{3}\ge2\sqrt{3b^2\cdot\frac{1}{3}}=2b\)

Do đó: \(A\le\text{∑}\frac{a}{3a+2b+c-1}=\frac{a}{2a+b}\left(a+b+c=1\right)\)

\(2A\le\text{∑}\frac{2a}{2a+b}=3-\text{∑}\frac{b}{2a+b}=3-\text{∑}\frac{b^2}{2ab+b^2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(2A\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\Leftrightarrow A\le1\)

Dấu "=" khi \(a=b=c=\frac{1}{3}\)

25 tháng 2 2018

Cauchy-SChwarz:

\(\left(9a^3+3b^2+c\right)\left(\dfrac{1}{9a}+\dfrac{1}{3}+c\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\dfrac{a}{\left(9a^3+3b^2+c\right)}\le\dfrac{a\left(\dfrac{1}{9a}+\dfrac{1}{3}+c\right)}{\left(a+b+c\right)^2}=\dfrac{\dfrac{1}{9}+\dfrac{a}{3}+ac}{\left(a+b+c\right)^2}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(P\le\dfrac{1}{9}\cdot3+\dfrac{a+b+c}{3}+ab+bc+ca\)

\(\le\dfrac{1}{9}\cdot3+\dfrac{a+b+c}{3}+\dfrac{\left(a+b+c\right)^2}{3}=1\)

Dấu "=" \(\Leftrightarrow a=b=c=\dfrac{1}{3}\)

16 tháng 5 2017

khó úa z mik ko giai duoc k cho mik ik mik kb cho

17 tháng 7 2017

câu b có phải 2011 hông zậy mà sao lạ dữ

22 tháng 4 2017

a) \(a-\sqrt{a}\)

b) \(-5ab\sqrt{ab}\)

31 tháng 7 2017

a) Ta có:

\(5\sqrt{a}-4b\sqrt{25a^3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)

\(=5\sqrt{a}-4b.5a\sqrt{a}+5a.4b\sqrt{a}-2.3\sqrt{a}\)

\(=5\sqrt{a}-20ab\sqrt{a}+20ab\sqrt{a}-6\sqrt{a}\) \(=-\sqrt{a}\)

b) Ta có:

\(5a\sqrt{64ab^3}-\sqrt{3}.\sqrt{12a^3b^3}+2ab\sqrt{9ab}\) \(-5b\sqrt{81a^3b}\)

\(=5a.8b\sqrt{ab}-\sqrt{3.12a^3b^3}+2ab.3\sqrt{ab}\) \(-5b.9a\sqrt{ab}\)

\(=40ab\sqrt{ab}-6ab\sqrt{ab}+6ab\sqrt{ab}-45ab\)\(\sqrt{ab}\)

\(=-5ab\sqrt{ab}\)

25 tháng 7 2021

\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}=\frac{2xy^2}{3ab}\frac{3\sqrt{a^2.a}\sqrt{\left(b^2\right)^2}}{2\sqrt{2xy^2.y}}\)

\(=\frac{2xy^2}{3ab}\frac{3a\sqrt{a}b^2}{2y\sqrt{2xy}}=\frac{6xy^2ab^2\sqrt{a}}{6aby\sqrt{2xy}}=\frac{bxy\sqrt{a}}{\sqrt{2xy}}\)

\(=\frac{bxy\sqrt{2axy}}{2xy}=\frac{b\sqrt{2axy}}{2}\)