K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2021

\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)

9 tháng 9 2021

\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)

 

17 tháng 7 2021

a) `(x^3-x^2)/(x^3-2x^2+x)`

`=(x^2(x-1))/(x(x-1)(x-1))`

`=x/(x-1)`

`=>` 2 phân thức bằng nhau.

b) `(x^2+2x+1)/(2x^2-2)`

`=((x+1)(x+1))/(2(x+1)(x-1))`

`=(x+1)/(2(x-1))`

`=(x+1)/(2x-2)`

`=>` 2 phân thức bằng nhau

a) Ta có: \(\dfrac{x^3-x^2}{x^3-2x^2+x}\)

\(=\dfrac{x^2\left(x-1\right)}{x\left(x^2-2x+1\right)}\)

\(=\dfrac{x\cdot\left(x-1\right)}{\left(x-1\right)^2}=\dfrac{x}{x-1}\)

b) Ta có: \(\dfrac{x^2+2x+1}{2x^2-2}\)

\(=\dfrac{\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x+1}{2x-2}\)

26 tháng 4 2022

a. 5 - 3(x + 4) = -1

⇔ 5 - 3x - 12 = -1

⇔ 3x = -1 - 5 + 12

⇔ 3x = 6

⇔ x = 2

26 tháng 4 2022

\(d,2x^2-3=5\)

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow x=\pm2\)

\(e,x\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)

27 tháng 9 2023

a) x⁴ + 2x² + 1

= (x²)² + 2.x².1 + 1²

= (x² + 1)²

b) 4x² - 12xy + 9y²

= (2x)² - 2.2x.3y + (3y)²

= (2x - 3y)²

c) -x² - 2xy - y²

= -(x² + 2xy + y²)

= -(x + y)²

d) (x + y)² - 2(x + y) + 1

= (x + y)² - 2.(x + y).1 + 1²

= (x - y + 1)²

27 tháng 9 2023

e) x³ - 3x² + 3x - 1

= x³ - 3.x².1 + 3.x.1² - 1³

= (x - 1)³

g) x³ + 6x² + 12x + 8

= x³ + 3.x².2 + 3.x.2² + 2³

= (x + 2)³

h) x³ + 1 - x² - x

= (x³ + 1) - (x² + x)

= (x + 1)(x² - x + 1) - x(x + 1)

= (x + 1)(x² - x + 1 - x)

= (x + 1)(x² - 2x + 1)

= (x + 1)(x - 1)²

k) (x + y)³ - x³ - y³

= (x + y)³ - (x³ + y³)

= (x + y)³ - (x + y)(x² - xy + y²)

= (x + y)[(x + y)² - x² + xy - y²]

= (x + y)(x² + 2xy + y² - x² + xy - y²)

= (x + y).3xy

= 3xy(x + y)

29 tháng 10 2021

Bài 1:

Ta có: \(5x^3-3x^2+2x+a⋮x+1\)

\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)

\(\Leftrightarrow a-10=0\)

hay a=10

30 tháng 1 2017

5 tháng 6 2018

17 tháng 4 2017

Có hai cách trình bày với bài này: một là bạn có thể liệt kê hết các phần tử ra hoặc bạn sắp xếp theo cùng thứ tự và tính như sau:

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Lời giải:
a. Khi $m=1$ thì pt trở thành:
$x^2-3=0$

$\Leftrightarrow x^2=3\Leftrightarrow x=\pm \sqrt{3}$

b.

Để pt có 2 nghiệm $x_1,x_2$ thì:
\(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m-1)^2-m(m-4)=2m+1\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m\geq \frac{-1}{2}\end{matrix}\right.\)

Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:
$x_1+x_2=\frac{2(m-1)}{m}$
$x_1x_2=\frac{m-4}{m}$

Khi đó:
$x_1+2x_2=3$

$\Leftrightarrow x_2=3-(x_1+x_2)=3-\frac{2(m-1)}{m}=\frac{m+2}{m}$

$x_1=\frac{2(m-1)}{m}-x_2=\frac{m-4}{m}$

$\frac{m-4}{m}=x_1x_2=\frac{m-4}{m}.\frac{m+2}{m}$
$\Leftrightarrow \frac{m-4}{m}(\frac{m+2}{m}-1)=0$

$\Leftrightarrow \frac{m-4}{m}.\frac{2}{m}=0$

$\Leftrightarrow m=4$ (tm)