Cho A= 2 mũ 1 + 2 mũ 2 + 2 mũ 3 +.........2 mũ 60
Chứng tỏ A:2 ; A:3 ; A:7 ; A:14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+2^3+...+2^{99}\)
\(=\left(1+2+2^2+2^3\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}\right)\)
\(=\left(1+2+4+8\right)+...+2^{96}.\left(1+2+2^2+2^3\right)\)
\(=15+...+2^{96}.15\)
\(=15.\left(1+...+2^{96}\right)⋮15\)
\(\Rightarrow\) \(S⋮15\)
a) Gọi tổng đó là A \(A = 1/1.2 + 1/2.3 +......+ 1/99.100 \)
A = 1/1.2 + 1/2.3 +......+ 1/99.100
A = 1 - 1/2 + 1/2 - 1/3 +.......+1/99 - 1/100
A = 1 - 1/100
A = 99/100 < 1
=> A < 1 (đpcm)
Gọi tổng trên là B
B = 1/22 + 1/32 +.......+ 1/1002
B = 1/2.2 + 1/3.3 + .......+ 1/100.100
B < 1/1.2 + 1/2.3 +......+ 1/99.100 B < 1 - 1/2 + 1/2 - 1/3 +.......+ 1/99 - 1/100 B < 1 - 1/100
B < 99/100 < 1
=> B < 1 (đpcm)
\(a.3^4=81;4^3=64;5^2=25;6^3=216\)
\(b.2^2\times2^3=32;3^3\times3=81;4^5\times4^2=16384\)
T ủng hộ mk nha ^....^
Đề bài có phải là như vậy ko bạn:
5x-2 - 32= 24- (68 : 66 - 62) ( x2-1)4 =81
( 3x+4 )2 = 196 : ( 193 x 192 ) - 31x 2005
Bạn xem hộ mik như vậy có đúng đề ko, đúng thì mik làm cho nhé!
a) 5x-2 - 32 = 24 - ( 68 : 66 - 62) ( x2-1)4 = 81 ( đề bài hình như ko có = 81 đâu bạn, nếu thế là sai đề đó)
=> 5x-2 - 9 = 16 - ( 0 ) ( x2-1)4
=> 5x-2 -9 = 16 - 0 = 16
=> 5x-2 = 52
=> x - 2 = 2
=> x = 4
Vậy x = 4
cmr với a,b,c lớn hơn 0
a mũ 3/b+b mũ 3/c +c mũ 3/a > hoặc bằng a mũ 2/b+b mũ 2/c+c mũ 2/a
các bạn ơi !có đ hỏi tv k?bởi vì mình đang cần hỏi tv nha các cậu
A = 1 + 32+34+...+3100
9A= 32+34+36+...+3102
=>9A-A=(32+34+36+...+3102)-(1 + 32+34+...+3100)
<=>8A=3102-1
=>A=\(\frac{3^{102}-1}{8}\)
Tương tự với câu B, nhân B cho 72=49
B=7+73+75+...+799
49B=73+75+77+...+7101
49B-B=7101-7
=>B=\(\frac{7^{101}-7}{48}\)
Có \(A=2+2^2+2^3+...+2^{60}\)
\(\Rightarrow A=2\left(1+2+...+2^{59}\right)⋮2\)(1)
Lại có : \(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{59}\right)⋮3\)(2)
Lại có :\(A=2+2^2+2^3+...+2^{60}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(A=7\left(2+...+2^{58}\right)⋮7\)(3)
Từ (1) và (3) \(\Rightarrow A⋮\left(2.7\right)=14\)(4)
Từ(1);(2);(3);(4) \(\Rightarrow A⋮2;3;7;14\)