Tìm min hoặc max của bt sau C=x^2_4xy+15+4y_2x+4y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2x^2-4xy+4y^2+2x+5=\left(x^2-4xy+4y^2\right)+\left(x^2+2x+1\right)+4=\left(x-2y\right)^2+\left(x+1\right)^2+4\)
\(\left(x-2y\right)^2\ge0;\left(x+1\right)^2\ge0\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2\ge0\)
\(\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2+4\ge4\)
vậy max của biểu thức trên = 4
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\dfrac{2\sqrt{x}+15}{\sqrt{x}+2}=\dfrac{2\left(\sqrt{x}+2\right)+11}{\sqrt{x}+2}=2+\dfrac{11}{\sqrt{x}+2}\text{≤}2+\dfrac{11}{2}=\dfrac{15}{2}\) ⇒ \(B_{Max}=\dfrac{15}{2}."="\text{⇔}x=0\)
\(A=3x+2\sqrt{x}+5\text{ ≥}5\left(x\text{ ≥}0\right)\)
⇒ \(A_{MIN}=5."="\) ⇔ \(x=0\)
P/s : Làm bừa :))
*\(B=\dfrac{2\sqrt{x}+15}{\sqrt{x}+2}=\dfrac{2\left(\sqrt{x}+2\right)+11}{\sqrt{x}+2}=2+\dfrac{11}{\sqrt{x}+2}\)
Max xảy ra khi: \(\dfrac{11}{\sqrt{x}+2}\) đạt Max
\(\Rightarrow\dfrac{11}{\sqrt{x}+2}\ge\dfrac{11}{\sqrt{0}+2}=\dfrac{11}{2}=5,5\)
Suy ra: \(2+\dfrac{11}{\sqrt{x}+2}\ge2+5,5=7,5\)
Vậy: \(Max_B=7,5\Leftrightarrow x=0\)
* \(A=3x+2\sqrt{x}+5\)
Do : \(x\ge0\Leftrightarrow\sqrt{x}\ge0\)
\(\Leftrightarrow3x+2\sqrt{x}+5\ge3.0+2.0+5=5\)
Vậy \(Min_A=5\Leftrightarrow x=0\)
Tìm min, max (nếu có) của các biểu thức sau :
a) 25x^2 - 10x + 4
b) -x^2 +2x
c) x^2 - 2x + y^2 - 4y +6
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
B= -x2+6x-15
= -x2+2.(-x).(-3)+9-24
= -(x2 -6x+9)-24
= -(x-3)2-24
Vì (x-3)2 lớn hơn hoặc bằng 0 với mọi x thuộc R
=> -(x-3)2 nhỏ hơn hoặc bằng 0 với mọi x thuộc R
=> -(x-3)2 -24 nhỏ hơn hoặc bằng -24 với mọi x thuộc R
Max B= -24 <=> x-3=0 =>x=3
B=-x\(^2\) +6x-9-6 =-(x-3)\(^2\) -6 ≤-6
Max của B =-6 <=> x-3=0 <=>x=3
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=5x^2-6x-1\)
\(\Rightarrow A=5\left(x^2-\frac{6}{5}x-\frac{1}{5}\right)\)
\(\Rightarrow A=5\left(x^2-2\cdot x\cdot\frac{6}{10}+\frac{36}{100}-\frac{14}{25}\right)\)
\(\Rightarrow A=5\left[\left(x-\frac{6}{10}\right)^2-\frac{14}{25}\right]\)
\(\Rightarrow A=5\left(x-\frac{6}{10}\right)^2-\frac{14}{5}\)
Vì \(\left(x-\frac{6}{10}\right)^2\ge0\forall x\)\(\Rightarrow A=5\left(x-\frac{6}{10}\right)^2-\frac{14}{5}\ge-\frac{14}{5}\forall x\)
\(A=-\frac{14}{5}\Leftrightarrow\left(x-\frac{6}{10}\right)^2=0\Leftrightarrow x=\frac{6}{10}\)
Vậy \(MinA=-\frac{14}{5}\Leftrightarrow x=\frac{6}{10}\)
\(x^2+y^2+2xy+4x+4y\)
\(=\left(x+y\right)^2+4\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+4\right)\)