Cho
\(A=1^3+2^3+3^3+....+9^3+10^3\)
CM: \(A⋮11\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: =8/7-5/88=669/616
b: \(=1+\dfrac{2}{9}\cdot\dfrac{3}{7}-\dfrac{10}{7}=1+\dfrac{2}{21}-\dfrac{10}{7}\)
\(=\dfrac{21+2-30}{21}=\dfrac{-7}{21}=\dfrac{-1}{3}\)
c: \(=\dfrac{11}{3}-\dfrac{6}{7}+4=\dfrac{77-18+84}{21}=\dfrac{143}{21}\)
Bài 2:
a: =>9/4-x=5/11*2=10/11
=>x=9/4-10/11=59/44
b: =>2/9:x=19/21
=>x=2/9:19/21=14/57
E = 1x2x3 + 2x3x4 + 3x4x5 + ... + 9x10x11
E x 4 = 1x2x3x4 + 2x3x4x4 + 3x4x5x4 + ... + 9x10x11x4
E x 4 = 1x2x3x4 + 2x3x4x(5-1) + 3x4x5x(6-2) + ... + 9x10x11x(12-8)
E x 4 = 1x2x3x4 + 2x3x4x5 - 1x2x3x4 + 3x4x5x6 - 2x3x4x5 + ... + 9x10x11x12 - 8x9x10x11.
E x 4 = 9x10x11x12
E = 9x10x11x12 : 4
E = 2970
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= \(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
= \(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(\frac{10}{11}\)
A= \(\frac{10}{11}:\frac{2}{3}\)
A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)
d) giả tương tự câu c kết quả \(\frac{25}{11}\)
tổng đặc biệt đó bạn
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}=\frac{9}{10}\)
những câu sau cũng áp dụng như vậy nhé
Bài 1 :
A = 1 + 2 + 22 + ... + 211
A = ( 1 + 2 ) + ( 22 + 23 ) + ... + ( 210 + 211 )
A = 3 + 22(1+2) + ... + 210(1+2)
A = 1.3 + 22.3 + ... + 210.3
A = 3.(1+22+...+210) chia hết cho 3
Bài 2 :
2.52 + 3:710 - 54:33
= 2.25 + 3:1 - 54:27
= 50 + 3 - 2
= 49
Bài 3 :
a) ( 2x - 6 ) . 47 = 49
2x - 6 = 42 = 16
2x = 16
=> x = 8
b) ( 27x + 6 ) : 3 - 11 = 9
( 27x + 6 ) : 3 = 20
27x + 6 = 60
27x = 54
=> x = 2
c) 740 : ( x + 10 ) = 102 - 2.13
740 : ( x + 10 ) = 74
x + 10 = 10
=> x = 0
d) ( 15 - 6x ) . 35 = 36
15 - 6x = 3
6x = 12
=> x = 2
Bài 4 :
Ta có : ab + ba = ( 10a + b ) + ( 10b + a ) = ( 10a + a ) + ( 10b + b ) = 11a + 11a = 11.(a+b) chia hết cho 11
Bài 1 :
A = 1 + 2 + 22 + ... + 211
A = ( 1 + 2 ) + ( 22 + 23 ) + ... + ( 210 + 211 )
A = 3 + 22(1+2) + ... + 210(1+2)
A = 1.3 + 22.3 + ... + 210.3A = 3.(1+22+...+210) chia hết cho 3
Bài 2 :
2.52 + 3:710 - 54:33
= 2.25 + 3:1 - 54:27
= 50 + 3 - 2= 49
Bài 3 :
a) ( 2x - 6 ) . 47 = 49
2x - 6 = 42 = 16
2x = 16
=> x = 8
b) ( 27x + 6 ) : 3 - 11 = 9
( 27x + 6 ) : 3 = 20
27x + 6 = 60
27x = 54
=> x = 2
c) 740 : ( x + 10 ) = 102 - 2.13
740 : ( x + 10 ) = 74
x + 10 = 10
=> x = 0
d) ( 15 - 6x ) . 35 = 36
15 - 6x = 3
6x = 12
=> x = 2
Bài 4 :
Ta có : ab + ba = ( 10a + b ) + ( 10b + a ) = ( 10a + a ) + ( 10b + b ) = 11a + 11a = 11.(a+b) chia hết cho 11
\(A=1^3+2^3+...+10^3\)
Ta có : \(1^3+2^3+...+10^3=\left(1+2+3+...+10\right)^2\) (1)
Lại có \(\left(1+2+3+...+10\right)^2=55^2\)
Mà \(55⋮11\Rightarrow55^2⋮11\) (2)
Từ (1) và (2) suy ra
\(A:11\left(đpcm\right)\)