C =1/1,2 + 1/2,3 + 1/3,4 + .... + 1/2016 + 1/2017 + 1/2018
giải giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{20-19}{19.20}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}$
$=1-\frac{1}{20}=\frac{19}{20}$
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Lời giải:
$1,2+2,3+3,4+...+98,99+99,100=2,4x-1$
$(1+0,2)+(2+0,3)+(3+0,4)+...+(98+0,99)+(99+0,100)=2,4x-1$
$(1+2+3+...+98+99)+(0,2+0,3+0,4+...+0,99+0,100)=2,4x-1$
$=99.100:2 + (0,2+0,3+...+0,9)+(0,10+0,11+0,12+...+0,99)+0,1=2,4x-1$
$4950+0,1(2+3+...+9)+0,01(10+11+...+99)+0,1=2,4x-1$
$4950+0,1.44+0,01.4905+0,1=2,4x-1$
$5003,55=2,4x-1$
$x=\frac{100091}{48}$
Ta có: \(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Leftrightarrow100\cdot\dfrac{9}{10}-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Leftrightarrow\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]:\dfrac{1}{2}=1\)
\(\Leftrightarrow\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)=2\)
\(\Leftrightarrow x=-\dfrac{81}{100}\)