1. Tim x biet:
( x + \(\frac{3}{2}\))2 = \(\frac{9}{49}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{x+1}{49}+\frac{x+2}{48}+\frac{x+3}{47}+\frac{x+4}{46}+\frac{x+5}{45}=-5\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{49}+1\right)+\left(\frac{x+2}{48}+1\right)+\left(\frac{x+3}{47}+1\right)+\left(\frac{x+4}{46}+1\right)+\left(\frac{x+5}{45}+1\right)=-5+5\)
\(\Leftrightarrow\)\(\frac{x+50}{49}+\frac{x+50}{48}+\frac{x+50}{47}+\frac{x+50}{46}+\frac{x+50}{45}=0\)
\(\Leftrightarrow\)\(\left(x+50\right)\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\right)=0\)
Vì \(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\ne0\)
Nên \(x+50=0\)
\(\Rightarrow\)\(x=-50\)
Vậy \(x=-50\)
Chúc bạn học tốt ~
\(\frac{x-1}{21}=\frac{3}{x+1}\)
=> \(\left(x-1\right)\left(x+1\right)=21\cdot3\)
=> \(x^2-1=63\)
=> \(x^2=64\)
=> \(\orbr{\begin{cases}x^2=8^2\\x^2=\left(-8\right)^2\end{cases}\Rightarrow}\orbr{\begin{cases}x=8\\x=-8\end{cases}}\)
\(2\frac{7}{9}-\frac{12}{13}x=\frac{7}{9}\)
=> \(\frac{12}{13}x=2\)
=> \(x=\frac{13}{6}\)
d, \(\frac{x-1}{21}=\frac{3}{x+1}\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=63\)
\(\Leftrightarrow x^2-1=63\Leftrightarrow x^2=64\Leftrightarrow x=\pm8\)
e, \(2\frac{7}{9}-\frac{12}{13}x=\frac{7}{9}\)
\(\Leftrightarrow\frac{12}{13}x=2\Leftrightarrow x=\frac{13}{6}\)
a, 60%x + 2/3x =1/3.6 1/3
3/5x +2/3x =1/3.19/3
x.(3/5+2/3)=19/9
x.(9/15+10/15)=19/9
x.19/15=19/9
x=19/9:19/15
x=15/9
Vậy x=15/9
b,3.(3x-1/2)^3 +1/9=0
3.(3x-1/2)^3= -1/9
(3x-1/2)^3= -1/9:3
(3x-1/2)^3= -1/27
(3x-1/2)^3=(-1/3)^3
3x-1/2= -1/3
3x= -1/3-1/2
3x= -2/6+(-3/6)
3x= -5/6
x= -5/6 :3
x=-5/18
Vậy x=-5/18
c) \(\frac{7}{9}\div\left(2+\frac{3}{4}x\right)+\frac{5}{9}=\frac{23}{27}\)
\(\frac{7}{9}\div\left(2+\frac{3}{4}x\right)=\frac{23}{27}-\frac{5}{9}\)
\(\frac{7}{9}\div\left(2+\frac{3}{4}x\right)=\frac{23}{27}-\frac{15}{27}\)
\(\frac{7}{9}\div\left(2+\frac{3}{4}x\right)=\frac{8}{27}\)
\(2+\frac{3}{4}x=\frac{7}{9}\div\frac{8}{27}\)
\(2+\frac{3}{4}x=\frac{7}{9}.\frac{27}{8}\)
\(2+\frac{3}{4}x=\frac{21}{8}\)
\(\frac{3}{4}x=\frac{21}{8}-2\)
\(\frac{3}{4}x=\frac{21}{8}-\frac{16}{8}\)
\(\frac{3}{4}x=\frac{5}{8}\)
\(x=\frac{5}{8}\div\frac{3}{4}\)
\(x=\frac{5}{8}.\frac{4}{3}\)
\(x=\frac{5}{6}\)
Vậy \(x=\frac{5}{6}\).
d) \(\left|x-\frac{1}{3}\right|-\frac{3}{4}=\frac{5}{3}\)
\(\left|x-\frac{1}{3}\right|=\frac{5}{3}+\frac{3}{4}\)
\(\left|x-\frac{1}{3}\right|=\frac{20}{12}+\frac{9}{12}\)
\(\left|x-\frac{1}{3}\right|=\frac{29}{12}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{29}{12}\\x-\frac{1}{3}=-\frac{29}{12}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{11}{4}\\x=-\frac{25}{12}\end{cases}}\)
Vậy \(x\in\left\{\frac{11}{4};-\frac{25}{12}\right\}\).
a) \(P=\frac{3x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)
\(P=\frac{3\left(x-9\right)}{\left(x-3\right)\left(x-2\right)}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)
\(P=\frac{3}{x-2}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)
\(P=\frac{3\left(3-x\right)-\left(x+3\right)\left(3-x\right)-\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(3-x\right)}\)
\(P=\frac{9-3x-9+x^2-2x^2+4x-x+2}{\left(x-2\right)\left(3-x\right)}\)
\(P=\frac{2-x^2}{\left(x-2\right)\left(3-x\right)}\) (*)
b) Thay \(x=-\frac{1}{2}\) vào (*) ta có:
\(P=\frac{2-\left(-\frac{1}{2}\right)^2}{\left[\left(-\frac{1}{2}\right)-2\right]\left[3-\left(-\frac{1}{2}\right)\right]}=\frac{2-\frac{1}{4}}{-\frac{5}{2}.\frac{7}{2}}=-\frac{\frac{7}{4}}{\frac{5}{2}.\frac{7}{2}}=-\frac{7}{35}=-\frac{1}{5}\)
c) \(\frac{2-x^2}{\left(x-2\right)\left(3-x\right)}< 0\)
\(\Leftrightarrow2-x^2< 0\)
\(\Leftrightarrow-x^2< -2\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow\hept{\begin{cases}x< -\sqrt{2}\\-\sqrt{2}< x< \sqrt{2}\\x>2\end{cases}}\)
Vậy: ...
\(\frac{x+2}{3}=\frac{2x-1}{5}\)
=> \(\left(x+2\right)\cdot5=3\left(2x-1\right)\)
=> \(5x+10=6x-3\)
=> \(6x-5x=10+3\)
=> \(x=13\)
\(\frac{-x}{4}=\frac{-9}{x}\)
=> \(-x^2=4\cdot\left(-9\right)\)
=> \(-x^2=-36\)
=> \(x^2=36\)
=> \(\orbr{\begin{cases}x^2=6^2\\x^2=\left(-6\right)^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
Quỳnh ơi, chuyển 6x sang sẽ là -6x mà viết như cậu phải là -6x+5x :)
a, \(\frac{x+2}{3}=\frac{2x-1}{5}\)
\(\Leftrightarrow\frac{5x+10}{15}=\frac{6x-3}{15}\Leftrightarrow5x+10=6x-3\Leftrightarrow-x+13=0\Leftrightarrow x=-13\)
b, \(\frac{-x}{4}=\frac{-9}{x}\)\(\Leftrightarrow x^2=36\Leftrightarrow x=\pm6\)
Bài làm:
c) \(\left(x-2\right)\left(x+3\right)>0\)
Ta xét 2 trường hợp sau:
+ Nếu \(\hept{\begin{cases}x-2>0\\x+3>0\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\x>-3\end{cases}\Rightarrow}x>2\)
+ Nếu \(\hept{\begin{cases}x-2< 0\\x+3< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2\\x< -3\end{cases}}\Rightarrow x< -3\)
Vậy \(\orbr{\begin{cases}x>2\\x< -3\end{cases}}\)
d) \(-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Leftrightarrow-\frac{32}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{8}{27}\)
\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Rightarrow3x-\frac{7}{9}=-\frac{2}{3}\)
\(\Leftrightarrow3x=\frac{1}{9}\)
\(\Leftrightarrow x=\frac{1}{27}\)
Vậy \(x=\frac{1}{27}\)
Học tốt!!!!
\(\left(x+\frac{3}{2}\right)^2=\frac{9}{49}\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=\left(\frac{3}{7}\right)^2\)
\(\Rightarrow x+\frac{3}{2}=\frac{3}{7}\)
\(\Rightarrow x=\frac{3}{7}-\frac{3}{2}\)
\(\Rightarrow x=\frac{-15}{14}\)
Vậy \(x=\frac{-15}{14}\)
_Chúc bạn học tốt_
(x+3/2)2=9/49
x+3/2=3/7
X=3/7-3/2
x=6-21/14
x=-15/14