Cho tổng S = 1/2^2 + 1/3^2 +1/4^2 +... + 1/(n - 1)^2 +1/n^2. Chứng tỏ rằng S<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
`Answer:`
1. \(S=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}\)
\(\Rightarrow S=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{80}\right)\)
\(\Rightarrow S>\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{80}+...+\frac{1}{80}\right)\)
\(\Rightarrow S>20.\frac{1}{60}+20.\frac{1}{80}\)
\(\Rightarrow S>\frac{1}{3}+\frac{1}{4}\)
\(\Rightarrow S>\frac{7}{12}\)
2. \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}\)
Ta có:
\(2^2< 1.2\Rightarrow\frac{1}{2^2}< \frac{1}{1.2}\)
\(3^2< 2.3\Rightarrow\frac{1}{3^2}< \frac{1}{2.3}\)
\(4^2< 3.4\Rightarrow\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(2009^2< 2008.2009\Rightarrow\frac{1}{2009^2}< \frac{1}{2008.2009}\)
\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}\)
\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)
\(\Rightarrow S< 1-\frac{1}{2009}< 1\)
\(\Rightarrow S< 1\)
3. \(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)
\(=\frac{1}{5}-\frac{1}{200}\)
\(=\frac{39}{200}\)
Lời giải:
\(S=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{9^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8..9}\)
hay \(S< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{9-8}{8.9}\)
\(S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(S< 1-\frac{1}{9}=\frac{8}{9}\) (1)
-----------------------
Mặt khác:
\(S> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\\ S> \frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{10-9}{9.10}\\ S> \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\\ S> \frac{1}{2}-\frac{1}{10}=\frac{2}{5}(2)\)
Từ $(1); (2)$ ta có đpcm
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)
Vậy S<1
Ta có :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-2\right)\left(n-1\right)}+\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-2}-\frac{1}{n-1}+\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow S< 1-\frac{1}{n}< 1\)
Vậy \(S=1\)