cho a,b,c > 0 thỏa mãn a + b + c + abc = 4
Tìm GTNN của biểu thức P = \(a^3+b^3+c^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2\left(b^2+bc+c^2\right)=2b^2+2c^2+2bc\le2b^2+2c^2+b^2+c^2=3\left(b^2+c^2\right)\Rightarrow b^2+c^2\le3-a^2\Rightarrow a^2+b^2+c^2\le3\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\).
Áp dụng bđt Schwars ta có:
\(T\ge a+b+c+\dfrac{18}{a+b+c}=\left(a+b+c+\dfrac{9}{a+b+c}\right)+\dfrac{9}{a+b+c}\ge2\sqrt{9}+\dfrac{9}{3}=9\).
Đẳng thức xảy ra khi a = b = c = 1.
UCT. Chứng minh \(2a+\frac{1}{a}\ge\frac{a^2+5}{2}\) với \(0< a^2;b^2;c^2< \sqrt{3}\)
Tương tự cộng lại là xong
Theo bất đẳng thức Cauchy, ta có:
\(a+\frac{1}{a}\ge2\)và \(b+\frac{1}{b}\ge2\)và \(c+\frac{1}{c}\ge2\)
\(\Rightarrow P\ge a+b+c+6\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)( thỏa đề bài)
\(\Leftrightarrow minP=1+1+1+6=9\)
Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(A=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{2^2}{3}=\frac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2}{3}\)
Vậy .............
\(\dfrac{4}{3}=a+2\sqrt{\dfrac{a}{4}.b}+\dfrac{1}{2}\sqrt[3]{\dfrac{a}{2}.2b.8c}\)
\(\dfrac{4}{3}\le a+\dfrac{a}{4}+b+\dfrac{1}{6}\left(\dfrac{a}{2}+2b+8c\right)=\dfrac{4}{3}\left(a+b+c\right)\)
\(\Rightarrow a+b+c\ge1\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{16}{21};\dfrac{4}{21};\dfrac{1}{21}\right)\)
Anh ơi cho em hỏi làm sao để tách/tìm điểm rơi như thế này ạ?
Lời giải:
Áp dụng BĐT SVac.xơ: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}\)
\(\Rightarrow A\geq a+b+c+\frac{9}{a+b+c}\)
Áp dụng BĐT Cô -si cho các số dương:
\((a+b+c)+\frac{9}{4(a+b+c)}\geq 2\sqrt{\frac{9}{4}}=3\)
\(a+b+c\leq \frac{3}{2}\Rightarrow \frac{27}{4(a+b+c)}\geq \frac{27}{4.\frac{3}{2}}=\frac{9}{2}\)
Cộng theo vế các BĐT trên:
\(\Rightarrow A\geq a+b+c+\frac{9}{a+b+c}\ge 3+\frac{9}{2}=\frac{15}{2}\)
Vậy \(A_{\min}=\frac{15}{2}\Leftrightarrow a=b=c=\frac{1}{2}\)
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
Ta có \(a^3+1+1\ge3\sqrt[3]{a.1.1}=3a\Leftrightarrow a^3\ge3a-2\) (Cosi)
Tương tự \(b^3\ge3b-2;c^3\ge3c-2\)
Cộng lại ta được \(a^3+b^3+c^3\ge3\left(a+b+c\right)-6\)
Lại có \(a^3+b^3+c^3\ge3abc\) (Cosi)
Do đó \(2\left(a^3+b^3+c^3\right)\ge3\left(a+b+c+abc\right)-6=3.4-6=6\)
\(\Rightarrow a^3+b^3+c^3\ge3\) có GTNN là 3
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)