A = 2^0 + 2^1 + 2^2 +........+ 2^2018. Tính A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^{2018}-2^{2017}-2^{2016}-.....-2^1-2^0\)
\(\Rightarrow-A=2^{2018}+2^{2017}+2^{2017}+.....+2^1+2^0\)
\(\Rightarrow-A=2^0+2^1+2^2+......+2^{2017}+2^{2018}\)
\(\Rightarrow2\left(-A\right)=2+2^2+2^3+......+2^{2018}+2^{2019}\)
\(\Rightarrow2\left(-A\right)-\left(-A\right)=-A=2^{2019}-2^0\)
\(\Rightarrow A=-\left(2^{2019}-1\right)=-2^{2019}+1=1-2^{2019}\)
Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ bên trái khung soạn thảo)
a) A = 11 + 12 + 13 + ......+ 2018
A = 2018 + ......+ 13 + 12 + 11
2A = ( 11 + 2018 ) + ( 12 + 2017 ) + ........+ ( 13 + 2016 ) + ( 12 + 2017 ) + ( 11 + 2018 )
2A = 2029 + 2029 + ......+ 2029 + 2029
Số số của dãy só trên là: ( 2018 - 11 ) + 1 = 2008 số
2A = 2029. 2008
2A = 4074232
A = 4074232 : 2
A = 2037116
Các câu b, c làm tương tự
d) D = 20 + 21 + 22 + 23 + .......+ 22018
2D = 21 + 22 + 23+ ......+ 22019
D = ( 21 + 22 + 23+ ......+ 22019 ) - ( 20 + 21 + 23 + ......+ 22018 )
D = 22019- 20 = 22019- 1
(Dấu . là dấu nhân)
a/\(\dfrac{2}{5}\cdot\dfrac{4}{3}-\dfrac{2}{5}:3\)
\(=\dfrac{2}{5}\cdot\dfrac{4}{3}-\dfrac{2}{5}\cdot\dfrac{1}{3}\)
\(=\dfrac{2}{5}\cdot\left(\dfrac{4}{3}-\dfrac{1}{3}\right)\)
\(=\dfrac{2}{5}\cdot1\)
\(=\dfrac{2}{5}\)
b/\(\dfrac{2010}{2018}:\dfrac{1}{2}+\dfrac{7}{2018}:\dfrac{1}{2}\)
\(=\left(\dfrac{2010}{2018}+\dfrac{7}{2018}\right):\dfrac{1}{2}\)
\(=\dfrac{2017}{2018}:\dfrac{1}{2}\)
\(=\dfrac{2017}{2018}\cdot2\)
\(=\dfrac{2017}{1009}\)
a, \(\dfrac{2}{5}\) \(\times\) \(\dfrac{4}{3}\) - \(\dfrac{2}{5}\) : 3
= \(\dfrac{2}{5}\) \(\times\) \(\dfrac{4}{3}\) - \(\dfrac{2}{5}\) \(\times\) \(\dfrac{1}{3}\)
= \(\dfrac{2}{5}\) \(\times\) ( \(\dfrac{4}{3}\) - \(\dfrac{1}{3}\))
= \(\dfrac{2}{5}\) \(\times\) 1
= \(\dfrac{2}{5}\)
b, \(\dfrac{2010}{2018}\) : \(\dfrac{1}{2}\) + \(\dfrac{7}{2018}\) : \(\dfrac{1}{2}\) + \(\dfrac{1}{2018}\) : \(\dfrac{1}{2}\)
= \(\dfrac{2010}{2018}\) \(\times\) \(\dfrac{2}{1}\) + \(\dfrac{7}{2018}\) \(\times\) \(\dfrac{2}{1}\) + \(\dfrac{1}{2018}\) \(\times\) \(\dfrac{2}{1}\)
= \(\dfrac{2}{1}\) \(\times\) ( \(\dfrac{2010}{2018}\) + \(\dfrac{7}{2018}\) + \(\dfrac{1}{2018}\))
= 2 \(\times\) \(\dfrac{2018}{2018}\)
= 2 \(\times\) 1
= 2
Ta có: \(A=2^0+2^1+2^2+2^3+...+2^{2018}\)
\(\Rightarrow2A=2^1+2^2+2^3+2^4+....+2^{2019}\)
\(\Rightarrow2A-A=\left(2^1+2^2+2^3+...+2^{2019}\right)-\left(2^0+2^1+2^2+...+2^{2018}\right)\)
\(\Rightarrow A=2^{2019}-2^0=2^{2019}-1\)
Vậy ...
\(A=2^0+2^1+...+2^{2018}\)
\(\Rightarrow2A=2^1+2^2+...+2^{2019}\)
\(\Rightarrow2A-A=\left(2^1+2^2+...+2^{2019}\right)-\left(2^0+2^1+...+2^{2018}\right)\)
\(\Rightarrow A=2^{2019}-1\)