K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

\(x^2+y^2-2x-2y+3\)

\(=x^2-2.x.1+1^2+y^2-2.y.1+1^2+1\)

\(=\left(x-1\right)^2+\left(y-1\right)^2+1>0+0+0=0\)

29 tháng 8 2017

Ta có : x2 + 2x + 2

= x2 + 2x + 1 + 1

= (x + 1)2 + 1 \(\ge1\forall x\)

Vậy  x2 + 2x + 2 \(>0\forall x\)

3 tháng 9 2018

Ta có : x2 + 2x + 2

=> x2 + 2x + 1 + 1

=> ( x + 1)2 + 1  >  1\(\forall x\)

Vậy x2 + 2x + 2   > \(0\forall x\)

11 tháng 8 2017

Ta có BĐT \(x^2+1\ge2x\Leftrightarrow\left(x-1\right)^2\ge0\forall x\in R\)

Tương tự: \(y^2+1\ge2y;z^2+1\ge2z\)

\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)

Và BĐT \(x^2+y^2+z^2\ge xy+yz+xz\left(2\right)\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\in R\)

Cộng theo vế 2 BĐT (1);(2) ta có:

\(2\left(x^2+y^2+z^2\right)+3\ge45\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge42\Rightarrow x^2+y^2+z^2\ge21\)

Khi x=y=z=1

11 tháng 8 2017

Sửa đề : cho \(CM:x^2+y^2+z^2\ge21\)

Ta có : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xy-2xz\ge0\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz\ge0\)

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)(1)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+z^2-2x-2y-2z+3\ge0\)

\(\Rightarrow x^2+y^2+z^2\ge2x+2y+2z-3\)(2)

Cộng vế với vế của (1); (2) lại ta được :

\(2\left(x^2+y^2+z^2\right)\ge xy+yz+xy+2x+2y+2z-3\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge45-3=42\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{42}{2}=21\)(đpcm)

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

Bài 2: 

a: \(=x^{n+19-14}=x^{n+5}\)

b: \(=x^{94-17-65}=x^{12}\)

1 tháng 8 2018

Biểu thức này ko nhỏ hơn 0 với mọi x,y thuộc R.

Nếu x = 2 và y = 1 thì vế trái bằng 2 > 0

Nếu x = 3 và y = 2 thì vế trái bằng 7 > 0.

Mình nghĩ bạn đang viết đề bài sai đấy.

30 tháng 3 2017

\(M=-x^2-y^2-2x+2y-3\)

\(=-\left(x^2+y^2+2x-2y+3\right)\)

\(=-\left(\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+1\right)\)

\(=-\left(\left(x+1\right)^2+\left(y-1\right)^2+1\right)\)

\(=-\left(x+1\right)^2-\left(y-1\right)^2-1\le-1< 0\forall x,y\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)