x^2 -2mx+3 =0 ( m = 1) giải phương trình sau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 2x + m - 4 = 0 hoặc 2mx - x + m = 0
<=> 2x + m - 4=0(1) hoặc (2m - 1)x +m =0(2)
(1)
Xét m = 0 thì pt có nghiệm duy nhất là x = 2
Xét m ≠ 0 thì pt có nghiệm là x = (4-m)/2
(2)
Xét m = 1/2 thì pt vô nghiệm.
Xét m ≠ 1/2 thì pt có nghiệm duy nhất là x= -1/(4m - 2)
Câu b thì bn viết ko rõ đề lắm nên k giải.
Với m = 2 phương trình trở thành
\(x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy......
b) Phương trình có nghiệm là -1
\(\Leftrightarrow\left(m-1\right)+2m+m^2-1=0\)
\(\Leftrightarrow m^2+3m-2=0\)
\(\Delta=3^2-4.1.\left(-2\right)=17>0\)
=> pt có 2 nghiệm pbiet \(\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
a) Thay m=2 vào pt
⇒ (2-1)x2-2 . 2 . x + 22 -1 = 0
⇒ x2- 4x + 3 = 0
⇒ x2- x -3x +3 =0
⇒x(x-1) -3(x-1)=0
⇒(x-1) (x-3) = 0
TH1 : x-1 =0
x= 1
TH2 : x-3 =0
x=3
Vậy x=1 ; x=3
b) Thay x=-1 vào pt
⇒ (m-1) . 1 + 2m + m2 -1 = 0
⇒ m-1 + 2m +m2 -1 = 0
⇒ m2 + 3m -2 = 0
⇒ m2 + \(\dfrac{3-\sqrt{17}}{2}\)m + \(\dfrac{3+\sqrt{17}}{2}\) m -2 =0
⇒ m( m + \(\dfrac{3-\sqrt{17}}{2}\) ) + 2 ( m +\(\dfrac{3-\sqrt{17}}{2}\)) =0
⇒ ( m+2) ( m + \(\dfrac{3-\sqrt{17}}{2}\)) = 0
Sau đó bn giải ra 2 TH là đc nha
a, Thay m=3 vào pt ta có:
\(\left(1\right)\Leftrightarrow x^2-6x+4=0\\ \Leftrightarrow x=3\pm\sqrt{5}\)
b, Để pt có 2 nghiệm thì \(\Delta'\ge0\)
\(\Leftrightarrow\left(-m\right)^2-1.4\ge0\\ \Leftrightarrow m^2-4\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)
\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\\ \Leftrightarrow x^2_1+2x_1+1+x^2_2+2x_2+1=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\\ \Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\\ \Leftrightarrow4m^2+4m-8=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)
Bài 1: Giải và biện luận các phương trình sau theo tham số m a) 2mx + 3 = m - x b) m(x - 2) = 3x + 1
b: Để phương trình vô nghiệm thì x-2=0
hay x=2
Để phương trình có nghiệm thì x-2<>0
hay x<>2
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x^2-2mx+m^2-m+3=0\left(1\right)\end{matrix}\right.\)
Pt có 3 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}1-2m+m^2-m+3\ne0\\\Delta'=m^2-\left(m^2-m+3\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m+4\ne0\left(\text{luôn đúng}\right)\\m>3\end{matrix}\right.\)
Vậy \(m>3\)
b.
Phương trình có 3 nghiệm pb khi và chỉ khi: \(mx^2+3x+m=0\) có 2 nghiệm pb khác 3
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\9m+9+m\ne0\\\Delta=9-4m^2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{9}{10}\\-\dfrac{3}{2}< m< \dfrac{3}{2}\end{matrix}\right.\)
ai h dung minh giai cho