K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

cấp cứu

\(\sqrt{2x\left(y+z\right)}< =\dfrac{2x+y+z}{2}\)

=>\(\dfrac{1}{\sqrt{x\left(y+z\right)}}>=\dfrac{2\sqrt{2}}{2x+y+z}\)

=>\(P>=2\sqrt{2}\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)

\(\Leftrightarrow P>=2\sqrt{2}\cdot\dfrac{\left(1+1+1\right)^2}{\left(2x+y+z\right)+x+2y+z+x+y+2z}=\dfrac{18\sqrt{2}}{4\cdot18\sqrt{2}}=\dfrac{1}{4}\)

Dấu = xảy ra khi x=y=z=6căn 2

1 tháng 3 2018

Áp dụng BĐt bu-nhi-a, ta có 

\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le\sqrt{\left(x^2+y^2+z^2\right)\left(6-x^2-y^2-z^2\right)}\)

Áp dụng BĐt cô-si, ta có 

\(\sqrt{\left(x^2+y^2+z^2\right)\left(6-x^2-y^2-z^2\right)}\le\frac{x^2+y^2+z^2+6-x^2-y^2-z^2}{2}=3\)

=> VT <=VP 

Dấu = xảy ra là của BĐT cô-si và bu-nhi-a, 

Bạn tự tìm nhá, t nhác làm tiếp lắm 

^^

27 tháng 10 2020

Theo điều kiện giả thiết, ta có:\(\sqrt{3}\ge x+y+z\Rightarrow3\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\Rightarrow xy+yz+zx\le1\)\(\Rightarrow VT\le\frac{x}{\sqrt{x^2+xy+yz+zx}}+\frac{y}{\sqrt{y^2+xy+yz+zx}}+\frac{z}{\sqrt{z^2+xy+yz+zx}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+x}.\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\)\(\le\frac{\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

27 tháng 10 2020

Câu hỏi của Lê Tài Bảo Châu - Toán lớp 9 - Học toán với OnlineMath

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Lời giải:

$(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=2$

$\Leftrightarrow (x+\sqrt{x^2+1})(x-\sqrt{x^2+1})(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$

$\Leftrightarrow -(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$

$\Leftrightarrow 2x+\sqrt{y^2+1}=2\sqrt{x^2+1}-y$

$\Rightarrow (2x+\sqrt{y^2+1})^2=(2\sqrt{x^2+1}-y)^2$
$\Leftrightarrow 4x^2+y^2+1+4x\sqrt{y^2+1}=4(x^2+1)+y^2-4y\sqrt{x^2+1}$

$\Leftrightarrow 4(x\sqrt{y^2+1})+y\sqrt{x^2+1})=3$

$\Leftrightarrow 4Q=3$

$\Leftrightarrow Q=\frac{3}{4}$