Tam giác ABC vuông tại A có đường cao AH. biết AB = 4cm, HC = 15cm. Tính độ dài đoạn thẳng BH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{3^2}{4}=\dfrac{9}{4}\left(cm\right)\)
\(BC=BH+HC=4+\dfrac{9}{4}=9\left(cm\right)\)
\(AB=\sqrt{BH.BC}=\sqrt{4.9}=6\left(cm\right)\)
\(AC=\sqrt{CH.BC}=\sqrt{\dfrac{9}{4}.9}=\dfrac{9}{2}\left(cm\right)\)
a: Xet ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
b: \(BH=\sqrt{15^2-12^2}=9\left(cm\right)\)
HC=12^2/9=16cm
CA=căn 16*25=20cm
c: CF/CA=4/20=1/5
CE/CB=5/25=1/5
=>CF/CA=CE/CB
=>ΔCFE đồng dạng với ΔCAB
=>góc CFE=90 độ
=>ΔCFE vuông tại F
a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạngvới ΔHCA
b: \(BH=\sqrt{15^2-12^2}=9\left(cm\right)\)
BC=15^2/9=25(cm)
\(AC=\sqrt{25^2-15^2}=20\left(cm\right)\)
c: CE/CB=CF/CA
góc C chung
=>ΔCEF đồng dạng với ΔCBA
=>góc CFE=góc CAB=90 độ
=>ΔCEF vuông tại F
d: CE/CB=CF/CA
=>CE*CA=CF*CB
A B C H 15 12
a, Xét tam giác ABH và tam giác CAH ta có :
^AHB = ^CHA = 900
^BAH = ^HCA ( cùng phụ ^HAC )
Vậy tam giác ABH ~ tam giác CAH ( g.g )
b, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác AHB vuông tại H
\(AB^2=BH^2+AH^2\Rightarrow BH^2=AB^2-AH^2=225-144=81\Rightarrow BH=9\)cm
* Áp dụng hệ thức :
\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{144}{9}=16\)cm
=> BC = HC + HB = 16 + 9 = 25 cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{12.25}{15}=20\)cm
a) Xét ΔBHA vuông tại H và ΔAHC vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)
Do đó: ΔBHA\(\sim\)ΔAHC(g-g)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(BC\cdot2,5=6,5^2\)
=>\(BC=\dfrac{6.5^2}{2.5}=16,9\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA=\sqrt{6.5^2-2.5^2}=6\left(cm\right)\)
HC+HB=BC
=>HC+2,5=16,9
=>HC=14,4(cm)
ΔAHC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(AC^2=14,4^2+6^2=243,86\)
=>AC=15,6(cm)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>BC=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>AH*10=6*8=48
=>AH=4,8(cm)
ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CB=CA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
a) Sửa đề: C/m tam giác AHB đồng dạng với tam giác CHA
Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔAHB∼ΔCHA(g-g)
\(AB^2=BH.BC=HB.\left(HB+HC\right)=HB^2+15HB\)
\(\Leftrightarrow HB^2+15HB=16\Leftrightarrow HB=1\left(cm\right)\)