p(x) = 2x^2 - 4x + 5 tìm giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)
c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)
\(\Leftrightarrow V\ge-1\forall x\)
Dấu '=' xảy ra khi x=1
a, \(A=x^4-2x^3+2x^2-2x+3\)
\(=\left(x^4+2x^2+1\right)-\left(2x^3+2x\right)+2\)
\(=\left(x^2+1\right)^2-2x\left(x^2+1\right)+2\)
\(=\left(x^2+1\right)\left(x^2-2x+1\right)+2\)
\(=\left(x^2+1\right)\left(x-1\right)^2+2\)
Vì \(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x^2+1\ge1\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow}\left(x^2+1\right)\left(x-1\right)^2\ge0}\)
\(\Rightarrow A=\left(x^2+1\right)\left(x-1\right)^2+2\ge2\)
Dấu "=" xảy ra khi x = 1
Vậy Amin = 2 khi x = 1
b, \(B=4x^2-2\left|2x-1\right|-4x+5=\left(4x^2-4x+1\right)-2\left|2x-1\right|+4=\left(2x-1\right)^2-2\left|2x-1\right|+4\)
đề sai ko
c, \(C=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)
Vì \(-\left(x-1\right)^2\le0\Rightarrow C=-\left(x-1\right)^2+5\le5\)
Dấu "=" xảy ra khi x=1
Vậy Cmin = 5 khi x = 1
2/
+) \(D=-x^2-y^2+x+y+3=-\left(x^2-x+\frac{1}{4}\right)-\left(y^2-y+\frac{1}{4}\right)+\frac{7}{2}=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\)
Vì \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\left(y-\frac{1}{2}\right)^2\le0\end{cases}\Rightarrow-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2\le0}\Rightarrow D=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\le\frac{7}{2}\)
Dấu "=" xảy ra khi x=y=1/2
Vậy Dmax=7/2 khi x=y=1/2
+) Đề sai
+)bài này là tìm min
\(G=x^2-3x+5=\left(x^2-3x+\frac{9}{4}\right)+\frac{11}{4}=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu "=" xảy ra khi x=3/2
Vậy Gmin=11/4 khi x=3//2
a) Giá trị lớn nhất:
\(A=2x-3x^2-4=-3\left(x^2-\frac{2}{3}x+\frac{4}{3}\right)=-3\left[x^2-2.x.\frac{1}{3}+\left(\frac{1}{3}\right)^2+\frac{35}{9}\right]=-3\left(x-\frac{1}{3}^2\right)-\frac{35}{3}\)
Vì \(\left(x-\frac{1}{3}\right)^2\ge0\left(x\in R\right)\)
Nên \(-3\left(x-\frac{1}{3}\right)^2\le0\left(x\in R\right)\)
do đó \(-3\left(x-\frac{1}{3}\right)^2-\frac{35}{3}\le-\frac{35}{3}\left(x\in R\right)\)
Vậy \(Max_A=-\frac{35}{3}\)khi \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)
\(B=-x^2-4x=-\left(x^2+4x\right)=-\left(x^2+2.x.2+2^2-2^2\right)=-\left(x+2\right)^2+4\)
Vì \(\left(x+2\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x+2\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x+2\right)^2+4\le4\left(x\in R\right)\)
Vậy \(Max_B=4\)khi \(x+2=0\Rightarrow x=-2\)
b) Giá trị nhỏ nhất
\(A=x^2-2x-1=x^2-2.x.+1-2=\left(x-1\right)^2-2\)
Vì \(\left(x-1\right)^2\ge0\left(x\in R\right)\)
nên \(\left(x-1\right)^2-2\ge-2\left(x\in R\right)\)
Vậy \(Min_A=-2\)khi \(x-1=0\Rightarrow x=1\)
\(B=4^2+4x+5=\left(2x\right)^2+2.2x.1+1+4=\left(2x+1\right)^2+4\)
vì \(\left(2x+1\right)^2\ge0\left(x\in R\right)\)
nên \(\left(2x+1\right)^2+4\ge4\left(x\in R\right)\)
Vậy \(Min_B=4\)khi \(2x+1=0\Rightarrow x=-\frac{1}{2}\)
bài này tìm GTLN thì có lẽ hay hơn -,-
C1: \(\frac{x^2-2x+1}{x^2+4x+5}=\frac{\left(x-1\right)^2}{x^2+4x+5}\ge0\) dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)
C2: Đặt \(A=\frac{x^2-2x+1}{x^2+4x+5}\)\(\Leftrightarrow\)\(\left(A-1\right)x^2+2\left(2A+1\right)x+5A-1=0\)
+) Nếu \(A=1\) thì \(x=-2\)
+) Nếu \(A\ne1\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta'\ge0\)
\(\Leftrightarrow\)\(\left(2A+1\right)^2-\left(A-1\right)\left(5A-1\right)\ge0\)
\(\Leftrightarrow\)\(4A^2+4A+1-5A^2+6A-1\ge0\)
\(\Leftrightarrow\)\(A^2-10A\le0\)
\(\Leftrightarrow\)\(\left(A-5\right)^2\le25\)
\(\Leftrightarrow\)\(0\le A\le10\)
\(\Rightarrow\)\(A\ge0\) dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)
a) A = x2 + 4x - 2 = x2 + 4x + 4 - 6 = (x + 2)2 - 6
(x + 2)2 ≥ 0 => A ≥ -6 => GTNN của A là -6, xảy ra khi x = 2
`a)A=x^2+4x-2`
`A=x^2+4x+4-6=(x+2)^2-6`
Vì `(x+2)^2 >= 0 AA x`
`<=>(x+2)^2-6 >= -6 AA x`
Hay `A >= -6 AA x`
Dấu "`=`" xảy ra`<=>(x+2)^2=0<=>x=-2`
Vậy `GTN N` của `A` là `-6` khi `x=-2`
________________________________________________
`b)B=2x^2-4x+3`
`B=2(x^2-2x+3/2)`
`B=2(x^2-2x+1)+1=2(x-1)^2+1`
Vì `2(x-1)^2 >= 0 AA x`
`<=>2(x-1)^2+1 >= 1 AA x`
Hay `B >= 1 AA x`
Dấu "`=`" xảy ra `<=>(x-1)^2=0<=>x=1`
Vậy `GTN N` của `B` là `1` khi `x=1`
__________________________________________________
`c)C=x^2+y^2-4x+2y+5`
`C=x^2-4x+4+y^2+2y+1`
`C=(x-2)^2+(y+1)^2`
Vì `(x-2)^2 >= 0 AA x` và `(y+1)^2 >= 0 AA y`
`=>(x-2)^2+(y+1)^2 >= 0 AA x,y`
Hay `C >= 0 AA x,y`
Dấu "`=`" xảy ra`<=>{((x-2)^2=0),((y+1)^2=0):}`
`<=>{(x=2),(y=-1):}`
Vậy `GTN N` của `C` là `0` khi `x=2`,y=-1
\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)
`P(x)=2x^2-4x+5`
`=2(x^2-2x)+5`
`=2(x^2-2x+1-1)+5`
`=2(x-1)^2-2+5`
`=2(x-1)^2+3>=3`
Dấu "=" xảy ra khi `x=1.`