K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

\(x=\frac{-10}{103}\)và \(y=\frac{13}{56}\)

Vì \(x=\frac{-10}{103}< 0\)(1)

   \(y=\frac{13}{56}>0\)(2)

Từ (1) và (2)

\(\Rightarrow x< y\)

\(\frac{-10}{103}< \frac{13}{56}\)

Bài 1:

Ta có:

\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)

\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)

Lại có:

\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)

\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)

Bài 2:

Ta có:

\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)

\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)

\(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)

\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)

\(\Rightarrow13A>13B\Rightarrow A>B\)

26 tháng 4 2017

\(A=2,970871956;B=\frac{102}{103}\)

\(A>2>1>B\)

\(\Rightarrow A>B\)

Đúng 100%

Đúng 100%

Đúng 100%

26 tháng 4 2017

Ta có: \(B=\frac{101+102+103}{102+103+104}=\frac{101}{102+103+101}+\frac{102}{102+103+104}+\)\(\frac{103}{102+103+104}\)

Vì: \(\frac{101}{102}>\frac{101}{102+103+104}\)

\(\frac{102}{103}>\frac{102}{102+103+104}\)

\(\frac{103}{104}>\frac{103}{102+103+104}\)

\(\Rightarrow A>B\)

Vậy A > B

20 tháng 2 2018

xy - x + 2y = 3

=> x(y-1) + 2y - 2 = 3 + 2

=> x(y-1) + 2(y-1) = 5

=> (x+2)(y+1) = 5

=> x + 2 và y + 1 \(\in\)Ư(5) = {-1;5;-5;1}

ta có bảng :

x+2-1-515
y+1-5-151
x-3-7-13
y-6-240

Câu 1:

Ta có:\(\frac{215}{216}< 1< \frac{104}{103}\)

Suy ra\(\frac{215}{216}< \frac{104}{103}\)

27 tháng 8 2019

\(1,\)Vì \(\frac{215}{216}< 1< \frac{104}{103}\)

\(=>\frac{215}{216}< \frac{104}{103}\)

\(2,\)Vì \(-\frac{13}{27}< 1< \frac{13131313}{27272727}\)

\(=>-\frac{13}{27}< \frac{13131313}{27272727}\)

Nhớ ti.ck mk nha bn =)

29 tháng 3 2015

Ta có:\(y=\frac{101^{102}+1}{101^{102}+1}\)\(\Rightarrow\)\(101y=\frac{101\left(101^{102}+1\right)}{101^{103}+1}=\frac{101^{103}+101}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)

          \(x=\frac{101^{103}+1}{101^{104}+1}\Rightarrow101x=\frac{101\left(101^{103}+1\right)}{101^{104}+1}=\frac{101^{104}+101}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)     Vì \(\frac{100}{101^{103}+1}>\frac{100}{101^{104}+1}\)nên \(1+\frac{100}{101^{^{103}}+1}>1+\frac{100}{101^{104}+1}\)hay 101y>101x. Suy ra y>x

11 tháng 7 2018

\(2x+\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+\frac{31}{30}+\frac{43}{42}+\frac{57}{56}+\frac{73}{72}+\frac{91}{90}=10\)
=> \(2x+\frac{6+1}{6}+\frac{12+1}{12}+....+\frac{90+1}{90}=10\)
=> \(2x+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+10=10\)
=> \(2x+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}=0\)
=>\(2x+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}=0\)
=>\(2x+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=0\)
=> \(2x-\frac{1}{10}=0\)
=>2x=\(\frac{1}{10}\)=> x=1/20
 

11 tháng 7 2018

mình có bị nhầm chỗ dấu suy ra thứ 3. đáng lẽ ra biểu thức đó cộng 8 chứ k phải cộng 10 do mình sơ ý nên bạn hãy sủa lại chỗ ấy

8 tháng 3 2017

Giá trị của \(\frac{-22}{45}\)là:

 \(-22:45=-0,4888...\)

Giá trị của \(\frac{-51}{103}\)là:

\(-51:103=-0,4951...\)

Vì: \(-0,4888...< -0,4951...\)nên \(\frac{-22}{45}\)\(< \frac{-51}{103}\).

8 tháng 3 2017

quy đồng lên là xong