Tìm x;y nguyên biết x-xy+y=6
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Những câu hỏi liên quan
LK
1

25 tháng 6 2015
a) \(aaaa:x=a\Rightarrow aaaa:a=x\Rightarrow x=1111\)
b) \(x\times a=a0a0a0\Rightarrow x=a0a0a0:a\Rightarrow x=101010\)
DT
1

7 tháng 9 2016
Để M có giá trị nguyên thì x - 2 chia hết cho x + 3
=> (x + 3) - 5 chia hét cho x + 3
=> 5 chia hết cho x + 3
=> x + 3 thuộc Ư(5) = {-1;1;-5;5}
Ta có:
x + 3 | -5 | -1 | 1 | 5 |
x | -8 | -4 | -2 | 2 |
M
0

B
0

\(x-xy+y=6\Leftrightarrow x\left(1-y\right)=6-y\Leftrightarrow x=\frac{6-y}{1-y}\)(1)
Để x nhận giá trị nguyên thì \(6-y⋮1-y\). Mà \(1-y⋮1-y\)
Suy ra \(6-y-\left(1-y\right)⋮1-y\Rightarrow5⋮1-y\). Lại có 1-y thuộc Z
Nên \(1-y\in\left\{1;5;-1;-5\right\}\Rightarrow y\in\left\{0;-4;2;6\right\}\)
Thay các giá trị của y vào (1), ta có: \(y=0\Rightarrow x=6\)\(;\) \(y=-4\Rightarrow x=2\)
\(y=2\Rightarrow x=-4;y=6\Rightarrow x=0\)
Vậy \(\left(x;y\right)\in\left\{\left(6;0\right);\left(2;-4\right);\left(-4;2\right);\left(0;6\right)\right\}.\)