Tìm x để A < 0 , biết : \(A=1-\frac{2x+3}{2}\)
Ai nhanh Xeniel tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 401 người nhận rồi
OK
\(\left(3x+1\right)\left(x-2\right)< 0.\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1>0,x-2< 0\\3x+1< 0,x-2>0\end{cases}}\)
\(Th1\hept{\begin{cases}3x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}3x>-1\\x< 2\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{-1}{3}\\x< 2\end{cases}\Rightarrow}}}\frac{-1}{x}< x< 2\)
\(Th2:\hept{\begin{cases}3x+1< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}3x< -1\\x>2\end{cases}\Leftrightarrow\hept{\begin{cases}x< \frac{-1}{2}\\x>2\end{cases}\left(loại\right)}}}\)
Vậy \(\frac{-1}{x}< x< 2\)
phần a các bn kia làm thiếu
(-3)2 cũng = 9
nên 2x-1 cũng có thể = -3
=> 2x - 1 = -3
=> 2x = -3 + 1
=> 2x = -2
=> x = -2 : 2
=> x = -1
vậy x = -1 hoặc x = 2
a) (2x-1)2=9
=> 2x-1=3
2x=3+1
2x=4
=> x=2
b) (x2-4)(2x+10)=0
\(\Rightarrow\orbr{\begin{cases}x^2-4=0\\2x+10=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
Vậy x=-5 hoặc x=2
c) (x-1)(x+3)<0
=> x-1 và x+3 trái dấu
TH1 : \(\hept{\begin{cases}x-1>0\\x+3< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>1\\x< -3\end{cases}}\) => vô lý
TH2: \(\hept{\begin{cases}x-1< 0\\x+3>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x>-3\end{cases}}\Rightarrow-3< x< 1\)
=> x={-2,-1,0}
a) \(\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\)
\(\frac{1}{3}:x=\frac{-1}{15}\)
\(x=-5\)
vậy ...
\(a,\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\)
\(\frac{1}{3}:x=\frac{3}{5}-\frac{2}{3}\)
\(\frac{1}{3}:x=-\frac{1}{15}\)
\(x=\frac{1}{3}:\left(-\frac{1}{15}\right)\)
\(x=-5\)
câu b e chưa nghĩ ra =.=
\(a,ĐKXĐ:\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}\Leftrightarrow x\ne\pm1}\)
\(b,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}+\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)
\(=\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}:\frac{x-1-x\left(x+1\right)+2}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{x-1-x^2-x+2}\)
\(=\frac{4x}{1-x^2}\)
\(c,A\ge0\Leftrightarrow\frac{4x}{1-x^2}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}4x\ge0\\1-x^2\ge0\end{cases}\left(h\right)\hept{\begin{cases}4x\le0\\1-x^2\le0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2\le1\end{cases}\left(h\right)\hept{\begin{cases}x\le0\\x^2\ge1\end{cases}}}\)
\(\Leftrightarrow0\le x\le1\left(h\right)x\le-1\)
Vậy ///////
\(\frac{2}{7}< \frac{x}{3}< \frac{11}{4};x\inℕ\)
=>\(\frac{12.2}{84}< \frac{28x}{84}< \frac{11.21}{84}\)
=>\(\frac{24}{84}< \frac{28x}{84}< \frac{231}{84}\)
=>24<28x<231
=>28x\(\in\){25;26;27;28;.............................;230}
=>Các số chia hết cho 28 là:28;56;84;112;140;168;196;224
=>x (thỏa mãn)\(\in\){1;2;3;4;5;6;7;8}
Vậy x\(\in\) {1;2;3;4;5;6;7;8}
\(\left(4,5m-\frac{3}{4}.5\frac{1}{3}\right).\frac{1}{12}+\frac{1}{2}x=1\frac{1}{2}\)
\(\left(4,5m-\frac{3}{4}.\frac{16}{3}\right).\frac{1}{2}.\frac{1}{6}+\frac{1}{2}x=\frac{3}{2}\)
\(\left(4,5m-\frac{48}{12}\right).\frac{1}{2}.\left(\frac{1}{6}+x\right)=\frac{3}{2}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}:\frac{1}{2}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}.\frac{2}{1}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{6}{2}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=3\)
=>3\(⋮\)\(\frac{1}{6}+x\)
=>\(\frac{1}{6}+x\)\(\in\)Ư(3)={\(\pm\)1;\(\pm\)3}
Ta có bảng:
\(\frac{1}{6}+x\) | -1 | 1 | -3 | 3 |
x | \(-1\frac{1}{6}\) | \(1\frac{1}{6}\) | \(-3\frac{1}{6}\) | 3\(\frac{1}{6}\) |
Vậy x\(\in\){\(-1\frac{1}{6}\);\(1\frac{1}{6}\);\(-3\frac{1}{6}\);\(\frac{1}{6}\)}
Chúc bn học tốt
a) Phân thức M xác định khi và chỉ khi :
+) \(2x-2\ne0\Leftrightarrow x\ne1\)
+) \(2x+2\ne0\Leftrightarrow x\ne-1\)
+) \(1-\frac{x-3}{x+1}\ne0\)
\(\Leftrightarrow x-3\ne x+1\)
\(\Leftrightarrow0x\ne4\left(\text{luôn đúng}\right)\)
Vậy \(x\ne\left\{1;-1\right\}\)
b) \(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)
\(M=\left(\frac{\left(x-2\right)\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}+\frac{3\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{x+1-x+3}{x+1}\right)\)
\(M=\left(\frac{2x^2-2x-4-2x^2-4x+6+6x+6}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{4}{x+1}\right)\)
\(M=\frac{8}{2\left(x-1\right)2\left(x+1\right)}\cdot\frac{x+1}{4}\)
\(M=\frac{8\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)\cdot4}\)
\(M=\frac{8\left(x+1\right)}{8\left(x+1\right)\left(x-1\right)}\)
\(M=\frac{1}{x-1}\)
\(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)
\(=\left(\frac{x+1}{2x-2}-\frac{x+3}{2x+2}\right):\left(\frac{4}{x+1}\right)=\left[\frac{\left(x+1\right)\left(2x+2\right)-\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]:\left(\frac{4}{x+1}\right)\)
\(=\left[\frac{2x^2+4x+2-2x^2+2x+6-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)
\(=\left[\frac{6x+8-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)
\(=\frac{14}{4x^2-4}:\left(\frac{4}{x+1}\right)=\frac{14x+14}{16x^2-16}=\frac{7x+7}{8x^2-8}\)
1/3x-2/5(x+1)=0
1/3x-2/5x-2/5=0
-1/15x-2/5=0
-1/15x=6/15
x=-6
Ta có : \(A=1-\frac{2x+3}{2}=\frac{2-2x-3}{2}=\frac{-2x-1}{2}\)
Để A < 0 thì : \(\frac{-2x-1}{2}< 0\)hay \(-2x-1< 0\)<=> -2x < 1 <=> x > \(-\frac{1}{2}\)
Vậy với x > \(-\frac{1}{2}\)Thỏa mãn điều kiện đề bài
Ta có :
\(A< 0\)
\(\Leftrightarrow\)\(1-\frac{2x+3}{2}< 0\)
\(\Leftrightarrow\)\(\frac{2x+3}{2}>1\)
\(\Leftrightarrow\)\(2x+3>2\)
\(\Leftrightarrow\)\(2x>-1\)
\(\Leftrightarrow\)\(x>\frac{-1}{2}\)
Vậy để \(A< 0\) thì \(x>\frac{-1}{2}\)
Chúc bạn học tốt ~