Giải pt : \(\frac{x-5}{x-1}+\frac{2}{x-3}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Huyền Subi x2 + 2x - 15 - (x2 - 1) + 8 = 2x - 6 chứ, sao lại là 2x + 6 được, bạn xem lại xem!
a.\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(-x^2+2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\\x=-1\end{matrix}\right.\)
(x-2)(x+1)(x+3)=(x+3)(x+1)(2x-58)
\(x^3+2x^2-5x-6\)=\(2x^3+3x^2-14x-15\)
\(-x^3-x^2+9x+9=0\)
\(-x^2\left(x+1\right)+9\left(x+1\right)=0\)
\(\left(x+1\right)\left(9-x^2\right)\)=0
(x+1)(3-x)(3+x)=0
*x+1=0 =>x=-1
*3-x=0=>x=3
*3+x=0=>x=-3
a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)
=> \(3x-3-2x-6=-15\)
=> \(3x-3-2x-6+15=0\)
=> \(x=-6\)
Vậy phương trình có nghiệm là x = -6 .
b, Ta có : \(3\left(x-1\right)+2=3x-1\)
=> \(3x-3+2=3x-1\)
=> \(3x-3+2-3x+1=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)
=> \(14-35x-5=16-24x\)
=> \(14-35x-5-16+24x=0\)
=> \(-35x+24x=7\)
=> \(x=\frac{-7}{11}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .
Bài 2 :
a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)
=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)
=> \(x+15x-3=2x-16-10x-15\)
=> \(x+15x-3-2x+16+10x+15=0\)
=> \(24x+28=0\)
=> \(x=\frac{-28}{24}=\frac{-7}{6}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .
b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)
=> \(6x+24-30x+120=10x-15x+30\)
=> \(6x+24-30x+120-10x+15x-30=0\)
=> \(-19x+114=0\)
=> \(x=\frac{-114}{-19}=6\)
Vậy phương trình có nghiệm là x = 6 .
\(\frac{3\text{x}-1}{x-1}-\frac{2\text{x}+5}{x+3}=1-\)\(\frac{4}{x^2+2\text{x}-3}\) \(\left(\text{Đ}K\text{X}\text{Đ}:x\ne1;x\ne-3\right)\)
\(\Leftrightarrow\frac{\left(3\text{x}-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2\text{x}+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}\)
\(\Rightarrow\left(3\text{x}-1\right)\left(x+3\right)-\left(2\text{x}+5\right)\left(x-1\right)=\left(x-1\right)\left(x+3\right)-4\)
\(\Leftrightarrow3\text{x}^2+8\text{x}-3-2\text{x}^2-3\text{x}+5=x^2+2\text{x}-3-4\)
\(\Leftrightarrow3\text{x}^2-2\text{x}^2-x^2+8\text{x}-3\text{x}-2\text{x}=-3-4+3-5\Leftrightarrow3\text{x}=-9\Leftrightarrow x=-3\)(không thỏa mãn ĐKXĐ)
Vậy pt vô nghiệm
\(\frac{5}{x^2+x-6}-\frac{2}{x^2+4x+3}=-\frac{3}{2x-1}\)
<=> \(\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> 5(x + 1)(2x - 1) - 2(x - 2)(2x - 1) = -3(x - 2)(x + 3)(x + 1)
<=> 6x2 + 15x - 9 = -3x3 - 6x2 + 15x + 18
<=> 6x2 - 9 = -3x3 - 6x2 + 18
<=> 6x2 - 9 + 3x3 + 6x2 - 18 = 0
<=> 12x2 - 27 + 3x3 = 0
<=> 3(4x2 - 9 + x3) = 0
<=> 3(x2 + x - 3)(x + 3) = 0
<=> \(\orbr{\begin{cases}x=-3\\x=\frac{-1\pm\sqrt{13}}{2}\end{cases}}\)
DKXD \(x\ne\frac{1}{2};2;-1;3,;-3\)
<=> \(\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)
<=> \(\frac{1}{x+3}\left(\frac{5}{x-2}-\frac{2}{x+1}\right)=\frac{-3}{2x-1}\)
<=> \(\frac{1}{x+3}\left(\frac{5x+5-2x+4}{\left(x-2\right)\left(x+1\right)}\right)=\frac{-3}{2x-1}\)
<=> \(\frac{1}{x+3}\left(\frac{3\left(x+3\right)}{\left(x-2\right)\left(x+1\right)}\right)=\frac{3}{1-2x}\)
<=> \(\frac{3}{\left(x-2\right)\left(x+1\right)}=\frac{3}{1-2x}\)
<=> \(x^2-x-2=1-2x\)
<=> \(x^2+x-3=0\)
<=> \(\orbr{\begin{cases}x=\frac{-1+\sqrt{13}}{2}\\x=\frac{-1-\sqrt{13}}{2}\end{cases}}\)
chuc ban hoc tot
\(\frac{2}{x-3}+\frac{x-5}{x-1}=1\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}+\frac{\left(x-3\right)\left(x-5\right)}{\left(x-1\right)\left(x-3\right)}=1\)
\(\Leftrightarrow\frac{2x-2+x^2-8x+15}{\left(x-3\right)\left(x-1\right)}=1\)
\(\Leftrightarrow\frac{x^2-6x+13}{x^2-4x+3}=1\)
\(\Leftrightarrow x^2-6x+13=x^2-4x+3\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\)
Ta có :
\(\frac{2}{x-3}+\frac{x-5}{x-1}=1\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}+\frac{\left(x-5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\frac{\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{2x-2}{\left(x-1\right)\left(x-3\right)}+\frac{x^2-8x+15}{\left(x-1\right)\left(x-3\right)}=\frac{x^2-4x+3}{\left(x-1\right)\left(x-3\right)}\)
\(\Rightarrow2x-2+x^2-8x+15=x^2-4x+3\)
\(\Leftrightarrow x^2-x^2+2x+4x-8x=3+2-15\)
\(\Leftrightarrow-2x=-10\Leftrightarrow x=5\)
Vậy x = 5 là ngiệm của PT.
\(\frac{x+3}{x-4}-\frac{1}{x}=-\frac{5}{4x-x^2}\) (Điều kiện \(x\ne0\)và \(x\ne4\)
<=> \(\frac{x\left(x+3\right)-\left(x-4\right)}{x\left(x-4\right)}=\frac{5}{x\left(x-4\right)}\)
<=> x2 + 3x -x+4=5
<=> x2 + 2x -1=0
<=> (x+1)2-2=0
<=> \(\left(x+1-\sqrt{2}\right)\left(x+1+\sqrt{2}\right)=0\)
=> \(\hept{\begin{cases}x_1=-1+\sqrt{2}\\x_2=-1-\sqrt{2}\end{cases}}\)
Cách khác ạ =)
\(\frac{x+3}{x-4}-\frac{1}{x}=\frac{-5}{4x-x^2}\left(đkxđ:x\ne0;4\right)\)
\(< =>\frac{\left(x+3\right).x}{\left(x-4\right).x}-\frac{1\left(x-4\right)}{\left(x-4\right).x}=\frac{5}{x\left(x-4\right)}\)
\(< =>\left(x+3\right).x-\left(x-4\right)=5\)
\(< =>x^2+3x-x+4=5\)
\(< =>x^2+2x-1=0\)
Ta có : \(\Delta=2^2-4\left(-1\right)=0\)
Vì delta = 0 nên phương trình sẽ có nghiệm kép
\(x_1=x_2=-\frac{b}{2a}=-\frac{2}{2}=-1\)
Vậy nghiệm của phương trình là -1
Đúng không nhỉ ?
\(\frac{x-5}{x-1}+\frac{2}{x-3}=1\)(ĐKXĐ: x khác 1;3)
\(\Leftrightarrow\frac{\left(x-5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}=1\)
\(\Leftrightarrow\frac{x^2-8x+15+2x-2}{x^2-4x+3}=1\)
\(\Leftrightarrow\frac{x^2-6x+13}{x^2-4x+3}=1\)\(\Rightarrow x^2-4x+3=x^2-6x+13\)
\(\Leftrightarrow x^2-4x+3-x^2+6x-13=0\)
\(\Leftrightarrow2x-10=0\Leftrightarrow2x=10\Leftrightarrow x=5\)(t/m ĐKXĐ)
Vậy nghiệm của pt là x=5.
ĐKXĐ: x khác 1, 3
\(\frac{x-5}{x-1}+\frac{2}{x-3}-1=0\Leftrightarrow\frac{\left(x-5\right).\left(x-3\right)}{\left(x-1\right).\left(x-3\right)}+\frac{2\left(x-1\right)}{\left(x-1\right).\left(x-3\right)}-\frac{\left(x-1\right).\left(x-3\right)}{\left(x-1\right).\left(x-3\right)}=0\\ \)
\(\Leftrightarrow\frac{\left(x^2-8x+15\right)+\left(2x-2\right)-\left(x^2-4x+3\right)}{\left(x-1\right).\left(x-3\right)}=0\)
\(\Leftrightarrow\left(x^2-8x+15\right)+2x-2-\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x^2-8x+15+2x-2-x^2+4x-3=0\)
\(\Leftrightarrow-2x+10=0\Leftrightarrow x=5\)