x.(x-2) > 0
x^2-5x=0
2 caau de . lam nhanh tk luon
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(7x-11\right)^3=2^5.5^2+200\)
=> \(\left(7x-11\right)^3=32.25+200\)
=>\(\left(7x-11\right)^3=800+200\)
=>\(\left(7x-11\right)^3=1000\)
=>\(\left(7x-11\right)^3=10^3\)
=> \(7x-11=10\)
=>\(7x=21\)
=>\(x=3\)
Vậy x = 3
\(\left(7x-11\right)^3=2^5\cdot5^2+200\)
\(\left(7x-11\right)^3=800+200\)
\(\left(7x-11\right)^3=1000\)
\(\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(7x=10+11\)
\(7x=21\)
\(x=21\div7\)
\(x=3\)
Ta có: \(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4\left[x\left(x+y+z\right)\right]\left[\left(x+y\right)\left(x+z\right)\right]+y^2z^2\)
\(=4\left(x^2+xy+zx\right)\left(x^2+xy+yz+zx\right)+y^2z^2\) \(\left(1\right)\)
Đặt \(\hept{\begin{cases}x^2+xy+zx=a\\yz=b\end{cases}}\)
Khi đó: \(\left(1\right)=4a\left(a+b\right)+b^2\)
\(=4a^2+4ab+b^2\)
\(=\left(2a+b\right)^2\)
\(=\left(2x^2+2xy+2zx+yz\right)^2\ge0\left(\forall x,y,z\right)\)
=> đpcm
Ta có:\(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xy+yz+zx\right)+y^2z^2\)Đặt \(x^2+xy+xz=t\)thì biểu thức trên trở thành \(4t\left(t+yz\right)+y^2z^2=4t^2+4yzt+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\forall x,y,z\left(đpcm\right)\)
= 65*(7+3)
= 65*10
= 650
2 78 m 99 cm= >999cm
3 = 330
4 56km= 56000
10000000000000000000000mm= 100000000000km
Ta có: (x-2)2.(y-3)2=4
=(x-2)2.(y-3)2=22
Suy ra: (x-2).(y-3)=2 (vì lũy thừa bằng nhau có số mũ giống nhau thì phải có cơ số giống nhau)
(x-2).(y-3)=1.2 (vì 2 là SNT nên Ư(2)={1,2} nên 2=1.2)
Suy ra: x-2=1 và y-3=2
x=1+2 y=2+3
x=3 y=5
Đúng ko?
Đây chỉ là giải ra điều kiện thôi, tìm x thì b tự tìm, cái này chắc ko cần m giải nữa nhỉ?
a) \(\Leftrightarrow\hept{\begin{cases}x-2>0\\7-x>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>0+2\\x>7-0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>2\\x>7\end{cases}}\)
b) \(\Leftrightarrow\hept{\begin{cases}x-3< 0\\x-5< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< 0+3\\x< 0+5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< 3\\x< 5\end{cases}}\)
c) \(\Leftrightarrow\hept{\begin{cases}x^2-13< 0\\x^2-17< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< 0+13\\x^2< 0+17\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2< 13\\x^2< 17\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< \sqrt{13}\\x< \sqrt{17}\end{cases}}\)
Cho từng cái > hoặc < 0 rồi giải ra điều kiện của x thôi b
Gần giống bài lúc nãy
Giải:
a) \(F\left(x\right)+G\left(x\right)-H\left(x\right)\)
\(=4x^2+3x-2+3x^2-2x+5-\left[x\left(5x-2\right)+3\right]\)
\(=4x^2+3x-2+3x^2-2x+5-\left(5x^2-2x+3\right)\)
\(=4x^2+3x-2+3x^2-2x+5-5x^2+2x-3\)
\(=2x^2+3x\)
Để \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)
\(\Leftrightarrow2x^2+3x=0\)
\(\Leftrightarrow x\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(F\left(x\right)-3x+5\)
\(=4x^2+3x-2-3x+5\)
\(=4x^2+3\)
Vì \(x^2\ge0;\forall x\)
\(\Leftrightarrow4x^2\ge0;\forall x\)
\(\Leftrightarrow4x^2+3\ge3>0;\forall x\)
Vậy ...
a) Ta có:
\(x\left(x-2\right)>0\)
\(\Rightarrow\)\(\hept{\begin{cases}x< 0\\x-2< 0\end{cases}}\)hoặc \(\hept{\begin{cases}x>0\\x-2>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 0\\x< 2\end{cases}}\)hoặc \(\hept{\begin{cases}x>0\\x>2\end{cases}}\)
\(\Rightarrow x< 0\)hoặc \(x>2\)thì x(x-2) >0.
b) \(x^2-5x=0\Rightarrow x\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
chuc mung nguoi nhanh nhat .^^