K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2023

\(a,x\left(y-z\right)+y\left(z-x\right)+z\left(x-y\right)\\ =xy-xz+yz-xy+xz-yz\\ =\left(xy-xy\right)+\left(xz-xz\right)+\left(yz-yz\right)\\ =0+0+0\\ =0\left(dpcm\right)\)

\(b,x\left(y+z-yz\right)-y\left(z+x-zx\right)+z\left(y-x\right)\\ =xy+xz-xyz-yz-xy+xyz+yz-xz\\ =\left(xy-xy\right)+\left(xz-xz\right)+\left(xyz-xyz\right)+\left(yz-yz\right)\\ =0+0+0+0\\ =0\left(dpcm\right)\)

 

 

6 tháng 12 2017

a,\(\dfrac{x-y}{xy}+\dfrac{y-z}{yz}+\dfrac{z-x}{zx}\)

=\(\dfrac{\left(x-y\right).z}{xyz}+\dfrac{\left(y-z\right).x}{xyz}+\dfrac{\left(z-x\right).y}{xyz}\)

=\(\dfrac{xz-yz}{xyz}+\dfrac{xy-xz}{xyz}+\dfrac{yz-xy}{xyz}\)

=\(\dfrac{xz-yz+xy-xz+yz-xy}{xyz}\)

=\(\dfrac{0}{xyz}\)=0

Vậy biểu thức trên ko phụ thuộc vào x,y,z

6 tháng 12 2017

b,\(\dfrac{1}{\left(x-y\right).\left(y-z\right)}-\dfrac{1}{\left(x-z\right).\left(y-z\right)}-\dfrac{1}{\left(x-y\right).\left(x-z\right)}\)

=\(\dfrac{1.\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}-\dfrac{\left(x-y\right).1}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}-\dfrac{1\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

=\(\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)=\(\dfrac{0}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)=0

Vậy biểu thức trên ko phụ thuộc vào x,y,z

29 tháng 12 2018

ai giúp mình với

29 tháng 12 2018

...

22 tháng 7 2017

Áp dụng BĐT AM-GM ta có:

\(\frac{\left(y+z\right)\sqrt{yz}}{x}\ge\frac{2\sqrt{yz}\cdot\sqrt{yz}}{x}=\frac{2\sqrt{\left(yz\right)^2}}{x}=\frac{2yz}{x}\)

Tương tự cho 2 BĐT còn lại ta cũng có

\(\frac{\left(x+y\right)\sqrt{xy}}{z}\ge\frac{2xy}{z};\frac{\left(x+z\right)\sqrt{xz}}{y}\ge\frac{2xz}{y}\)

\(\Leftrightarrow\frac{\left(y+z\right)\sqrt{yz}}{x}+\frac{\left(x+y\right)\sqrt{xy}}{z}+\frac{\left(x+z\right)\sqrt{xz}}{y}\ge\frac{2xy}{z}+\frac{2yz}{x}+\frac{2xz}{y}\)

Cần chứng minh \(\frac{2xy}{z}+\frac{2yz}{x}+\frac{2xz}{y}\ge2\left(x+y+z\right)\)

\(\Leftrightarrow\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge x+y+z\)

Áp dụng BĐT AM-GM:

\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}\cdot\frac{yz}{x}}=2\sqrt{y^2}=2y\)

Tương tự rồi cộng theo vế ta có ĐPCM

Khi \(x=y=z\)

8 tháng 12 2023

Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)

\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)

\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\) 

(vì \(2013=3.671=3\left(xy+yz+zx\right)\))

\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)

\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)

\(=\dfrac{1}{x+y+z}\)

ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)

\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)

\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))

Vậy ta có đpcm.

AH
Akai Haruma
Giáo viên
21 tháng 7 2017

Lời giải:

Đặt \((x,y,z)=(a^2,b^2,c^2)\). Bài toán tương đương với:

\(\frac{bc(b+c)}{a}+\frac{ac(a+c)}{b}+\frac{ab(a+b)}{c}\geq 2(a^2+b^2+c^2)\)

Biến đổi ta thấy:

\(\text{VT}=a^2\left ( \frac{b}{c}+\frac{c}{b} \right )+b^2\left ( \frac{a}{c}+\frac{c}{a} \right )+c^2\left ( \frac{a}{b}+\frac{b}{a} \right )\)

Áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} \frac{a}{b}+\frac{b}{a}\geq 2\\ \frac{a}{c}+\frac{c}{a}\geq 2\\ \frac{b}{c}+\frac{c}{b}\geq 2\end{matrix}\right.\Rightarrow \text{VT}\geq 2(a^2+b^2+c^2)=\text{VP}\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\Leftrightarrow x=y=z>0\)

22 tháng 7 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{\left(y+z\right)\sqrt{yz}}{x}\ge\dfrac{2\sqrt{yz}\cdot\sqrt{yz}}{x}=\dfrac{2yz}{x}\)

Tương tự cho 2 BĐT còn lại thì được:

\(\dfrac{2xy}{z}+\dfrac{2yz}{x}+\dfrac{2xz}{y}\ge2\left(x+y+z\right)\)

\(\Leftrightarrow\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\ge x+y+z\)

Tiếp tục dùng AM-GM:

\(\dfrac{xy}{z}+\dfrac{yz}{x}\ge2\sqrt{y^2}=2y\)

Tương tự rồi cộng theo vế có:

\(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\ge x+y+z\) (đúng)

Hay ta có ĐPCM. Khi \(x=y=z\)

9 tháng 1 2019

\(=\dfrac{x}{xy}-\dfrac{y}{xy}+\dfrac{y}{yz}-\dfrac{z}{yz}+\dfrac{z}{zx}-\dfrac{x}{zx}\)

\(=\dfrac{1}{y}-\dfrac{1}{x}+\dfrac{1}{z}-\dfrac{1}{y}+\dfrac{1}{x}-\dfrac{1}{z}\)

= 0

=> KO PHỤ THUỘC

9 tháng 1 2019

* Chứng minh biểu thức sau phụ thuộc vào x , y , z

\(\dfrac{x-y}{xy}+\dfrac{y-z}{yz}+\dfrac{z-x}{zx}\)

= \(\dfrac{(x-y)z+(y-z)x+(z-x)y}{xyz} \)

= \(\dfrac{xz-yz+xy-xz+zy-xy}{xyz}\)

= \(\dfrac{0}{xyz}\)

= 0

Vậy \(\dfrac{x-y}{xy} + \dfrac{y-z}{yz} + \dfrac{z-x}{zx} \) phụ thuộc vào x , y ,z

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????