tìm a, b ,c biết
abc - ac = 2 nhân bc +bc
cảm ơn các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo định lý hàm số cos thì :
\(a^2=b^2+c^2-2bc\)
cos A=\(b^2+c^2-2bc\)
cos 120 mà cos 1200=\(-\frac{1}{2}\)
\(\Rightarrow a^2=b^2+c^2+bc\)
Đặt ab + bc + ca = q; abc = r. Ta có:
\(A=\dfrac{\left(ab+bc+ca\right)+6\left(a+b+c\right)+27}{abc+3\left(ab+bc+ca\right)+9\left(a+b+c\right)+27}-\dfrac{1}{3\left(ab+bc+ca\right)}\)
\(A=\dfrac{q+33}{r+3q+36}-\dfrac{1}{3q}\).
Theo bất đẳng thức Schur: \(a^3+b^3+c^3+3abc\ge a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
\(\Leftrightarrow\left(a+b+c\right)^3+9abc\ge4\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow9r\ge4q-1\Leftrightarrow r\ge\dfrac{4q-1}{9}\).
Từ đó \(A\le\dfrac{q+33}{\dfrac{4q-1}{9}+3q+36}-\dfrac{1}{3q}\)
\(\Rightarrow A\leq \frac{27q^2+860q-323}{93q^2+969q}\)
\(\Rightarrow A+\dfrac{1}{10}=\dfrac{\left(3q-1\right)\left(121q+3230\right)}{30q\left(31q+323\right)}\le0\). (Do \(q=ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\))
\(\Rightarrow A\leq \frac{-1}{10}\). Dấu "=" xảy ra khi và chỉ khi a = b = c = 1.
Áp dụng BĐT Cô-si dạng Engel,ta có :
\(P=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Rightarrow\sqrt{3\left(a^2+b^2+c^2\right)}\ge a+b+c\)
\(\Rightarrow6=a+b+c+ab+bc+ac\le\sqrt{3\left(a^2+b^2+c^2\right)}+a^2+b^2+c^2\)
Đặt \(\sqrt{3\left(a^2+b^2+c^2\right)}=t\Rightarrow a^2+b^2+c^2=\frac{t^2}{3}\)
\(\Rightarrow t+\frac{t^2}{3}\ge6\Leftrightarrow3t+t^2-18\ge0\Leftrightarrow\left(t-3\right)\left(t+6\right)\ge0\)
\(\Rightarrow t-3\ge0\Rightarrow t\ge3\)( vì t + 6 > 0 )
\(\Rightarrow P\ge a^2+b^2+c^2=\frac{t^2}{3}\ge3\)
Vậy GTNN của P là 3 khi a = b = c = 1
d) (b+c)(b+a)(c-a)
c) (b-1)(ac+1-a-c)
thông cảm 2 câu đầu chưa nghĩ ra