K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

Khi x < - 3

=> 2|x + 3| > x + 6 (1) 

<=> 2(-x - 3) > x + 6

<=> -2x - 6 > x + 6

<=> -3x > 12

<=> x < -4

Khi  \(x\ge-3\)

=> |x + 3| = x + 3

=> (1) <=> 2(x + 3) > x + 6

=> 2x + 6 > x + 6

=> x > 0 

Vậy khi x > 0 hoặc x < -4 là nghiệm bất phương trình 

14 tháng 11 2017

\(\frac{x^2+x-6}{x-4}>0\)  <=> \(\frac{\left(x^2-4\right)+\left(x-2\right)}{x-4}>0\) <=> \(\frac{\left(x-2\right)\left(x+2\right)+\left(x-2\right)}{x-4}>0\)

<=> \(\frac{\left(x-2\right)\left(x+3\right)}{x-4}>0\). Có các TH:

+/ TH1: \(\hept{\begin{cases}\left(x-2\right)\left(x+3\right)>0\\x-4>0\end{cases}}< =>\orbr{\begin{cases}x< -3\\x>4\end{cases}}\)(1)

+/ TH2: \(\hept{\begin{cases}\left(x-2\right)\left(x+3\right)< 0\\x-4< 0\end{cases}}< =>-3< x< 2\) (2)

Từ (1) và (2) => Nghiệm của PT là:  x<2; x khác 3 và x>4

14 tháng 11 2017

Để \(\frac{x^2+x-6}{x-4}>0\)thì

\(x^2+x-6>0\)và \(x-4>0\)Với điều kiện \(x\ne4\)

Thứ 1

Để \(x^2+x-6>0\)

Thì \(x^2+x>6\)

Mà \(x^2\ge0\)và \(x^2>x\)

Suy ra \(x^2+x\ge0\)

Suy ra \(x>2\)và \(x\ge-2\)

Thứ 2

\(x-4>0\)

Suy ra \(x>4\)

Vậy x phải thỏa mãn điều kiện sau

 \(x\ge-2\)

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

6 tháng 4 2019

Chị ơi phần a giải 2 theo 2TH. TH1 là 3 đều  lớn hơn 0 và TH2 là 2  âm 1 dương

Phần b giải 3 TH: TH1 cả 3 nhỏ hơn 0

                              TH2 :2 dương 1 âm

                              TH3 : 1 âm 2 dương

11 tháng 5 2023

`|5x| = - 3x + 2`

Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :

`5x =-3x+2`

`<=> 5x +3x=2`

`<=> 8x=2`

`<=> x= 2/8=1/4` ( thỏa mãn )

Nếu `5x<0<=>x<0` thì phương trình trên trở thành :

`-5x = -3x+2`

`<=>-5x+3x=2`

`<=> 2x=2`

`<=>x=1` ( không thỏa mãn ) 

Vậy pt đã cho có nghiệm `x=1/4`

__

`6x-2<5x+3`

`<=> 6x-5x<3+2`

`<=>x<5`

Vậy bpt đã cho có tập nghiệm `x<5`

\(\frac{x-3}{x-2}>2\)

\(\Rightarrow\frac{x-3}{x-2}-2>0\)

\(\Rightarrow\frac{x-3-2x+4}{x-2}>0\)

\(\Rightarrow\frac{1-x}{x-2}>0\)

Trường hợp 1 :\(\hept{\begin{cases}1-x>0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}\left(vl\right)}}\)

Trường hợp 2 : \(\hept{\begin{cases}1-x< 0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}\left(tm\right)}}\)

Vậy \(1< x< 2\)

\(\hept{\begin{cases}1-x>0\\x-2 >0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}\left(VL\right)}}\)

x + 2 bạn ơi không phải x - 2 ở mẫu !