K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2018

\(A=\frac{2m^2-4m+5}{m^2-2m+2}=\frac{3\left(m^2-2m+2\right)-\left(m^2-2m+1\right)}{m^2-2m+2}\)

                                           \(=3-\frac{\left(m-1\right)^2}{m^2-2m+2}\le3do\hept{\begin{cases}\left(m-1\right)^2\ge0\\\left(m-1\right)^2+1>0\end{cases}\Rightarrow\frac{\left(m-1\right)^2}{m^2-2+2}\ge0}\)

dấu ''='' xay ra khi và chỉ khi x=1 

 VẬY GTLN CỦA ALAF 3 TẠI X=1

23 tháng 11 2018

Ta có: \(A=\frac{2m^2-4m+5}{m^2-2m+2}\)

\(=\frac{2m^2-4m+2+3}{m^2-2m+1+1}=\frac{2\left(m^2-2m+1\right)+3}{\left(m^2-2m+1\right)+1}\)

\(=\frac{2\left(m-1\right)^2+3}{\left(m-1\right)^2+1}\ge\frac{3}{1}=3\) (do \(\left(m-1\right)^2\ge0\))

Dấu "=" xảy ra \(\Leftrightarrow m-1=0\Leftrightarrow m=1\)

Vậy \(A_{min}=3\Leftrightarrow m=1\)

14 tháng 8 2020

\(A=2+\frac{1}{m^2-2m+1+1}=2+\frac{1}{\left(m-1\right)^2+1}\)

\(\left(m-1\right)^2+1\ge1\Leftrightarrow\frac{1}{\left(m-1\right)^2+1}\le1\)

\(\Rightarrow A\le3\)

 \("="\Leftrightarrow m=1\)

AH
Akai Haruma
Giáo viên
15 tháng 10 2020

Lời giải:

$2m^2+4m+4=2(m^2+2m+1)+2=2(m+1)^2+2\geq 2$ với mọi $m\in\mathbb{R}$

$\Rightarrow \sqrt{2m^2+4m+4}\geq \sqrt{2}$

$\Rightarrow A=\frac{1}{\sqrt{2m^2+4m+4}}\leq \frac{1}{\sqrt{2}}$

Vậy GTLN của $A=\frac{1}{\sqrt{2}}$ khi $m+1=0\Leftrightarrow m=-1$

NV
15 tháng 3 2022

\(S=\dfrac{2m^2+7m+23}{m^2+2m+10}\Rightarrow Sm^2+2Sm+10S=2m^2+7m+23\)

\(\Leftrightarrow\left(S-2\right)m^2+\left(2S-7\right)m+10S-23=0\)

\(\Delta=\left(2S-7\right)^2-4\left(S-2\right)\left(10S-23\right)\ge0\)

\(\Leftrightarrow4S^2-16S+15\le0\)

\(\Rightarrow\dfrac{3}{2}\le S\le\dfrac{5}{2}\)

\(S_{min}=\dfrac{3}{2}\) khi \(m=-4\)

\(S_{max}=\dfrac{5}{2}\) khi \(m=2\)

15 tháng 3 2022

Nguyễn Việt Lâm Giáo viên, thầy cho em hỏi tên phương pháp làm của thầy được không ạ??

17 tháng 7 2018

Đặt \(A=\frac{5-2m}{m^2+2}\Leftrightarrow Am^2+2A-5+2m=0\)

\(\Leftrightarrow Am^2+2m+\left(2A-5\right)=0\)

Để \(PT\) trên có nghiệm \(\Leftrightarrow\Delta'=1-A\left(2A-5\right)=-2A^2+5A+1\ge0\)

\(\Leftrightarrow\frac{5-\sqrt{33}}{4}\le A\le\frac{5+\sqrt{33}}{4}\)

Kết quả ko đẹp lắm nếu cảm thấy sai thì bạn lại đề; mình giải ko sai đâu

NV
13 tháng 1 2021

Bạn kiểm tra lại đề, nếu x và y theo m đúng thế này thì \(xy\) chỉ có GTNN chứ không có GTLN

29 tháng 3 2018