1/12 + 1/20 +1/30+...+1/90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Sửa đề:
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
\(=\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}+\dfrac{1}{8\times9}+\dfrac{1}{9\times10}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{3}-\dfrac{1}{10}\)
\(=\dfrac{10-3}{30}\)
\(=\dfrac{7}{30}\)

A= 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
=1/(1.2)+1/(2.3)+1/(3.4)+1/(4.5)
+1/(5.6)+1/(6.7)+1/(7.8)
+1/(8.9)+1/(9.10)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.+1/5-1/6...
+1/9-1/10
=1-1/10
=9/10
A= 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
=1/(1.2)+1/(2.3)+1/(3.4)+1/(4.5)
+1/(5.6)+1/(6.7)+1/(7.8)
+1/(8.9)+1/(9.10)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.+1/5-1/6...
+1/9-1/10
=1-1/10
=9/10

A= 1/6+1/12+1/20+1/30+.....+1/90+1/110
A=1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11
A=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11
A=1/2-(1/3-1/3)-(1/4-1/4)-(1/5-1/5)-(1/6-1/6)-(1/7-1/7)-(1/8-1/8)-(1/9-1/9)-(1/10-1/10)-1/11
A=1/2-1/11
A=11/22-2/22
A=9/22
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)

1/12+1/20+1/30+...+1/90+1/110
=1/3.4+1/4.5+1/5.6+...+1/9.10+1/10.11
=1/3-1/4+1/4-1/5+1/5-1/6+...+1/9-1/10+1/10-1/11
=1/3-1/11
=8/33
1/12+1/20+1/30+...+1/90+1/110
=1/3.4+1/4.5+1/5.6+...+1/9.10+1/10.11
=1/3-1/4+1/4-1/5+1/5-1/6+...+1/9-1/10+1/10-1/11
=1/3-1/11
=8/33

em lớp 6 nha
B= 1/2 + 1/6 + 1/12 +1/20 + 1/30 + 1/42 + 1/56 + 1/72
B= 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + 1/5*6 + 1/6*7 + 1/7*8 + 1/8*9
B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
B=1+0-0-0-0-0-0-0-1/9
B=1-1/9
B=8/9
k em nha

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{110}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)

Đặt A = \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}+\frac{1}{110}\)
A=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
A=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
A=\(\frac{1}{2}-\frac{1}{11}\)
A=\(\frac{9}{22}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.......+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...........+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...........+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)

Tổng quát: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+..+\frac{1}{110}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)

Ta có: \(\frac{1}{6}+\frac{1}{12}+....+\frac{1}{110}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{10.11}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+........+\frac{1}{110}\)
\(=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.......+\frac{1}{10\times11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{11}{22}-\frac{2}{22}\)
\(=\frac{9}{22}\)
= 1/(3*4) + 1/(4*5) + 1/(5*6) +....+ 1/(9*10)
=(4-3)/(3*4) + (5-4)/(4*5) + ...+(10-9)/(9*10)
=1/3-1/4+1/4-1/5+1/5-1/6...+1/9-1/10
=1/3-1/10
=7/30
Mình làm theo cách lớp 6 nha
1/12+1/20+1/30+...+1/90
=1/3×4 + 1/4×5 + 1/5×6 + ... + 1/9×10
=1/3 -1/4 +1/4 -1/5 + 1/5 - 1/6 + 1/6 - 1/7+....+1/9 -1/10
=1/3 - 1/10
=10/30 - 3/30
=7/30
Tôi chỉ làm được theo cách lớp 6 thôi nha