K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

áp dụng bđt bunhiacopxki ta có:

\(\left(a+b+c\right)\left(1+1+1\right)>=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\Rightarrow3\cdot3=9>=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\)

\(\Rightarrow3>=\sqrt{a}+\sqrt{b}+\sqrt{c}\)

dấu = xảy ra khi a=b=c=1

vậy max A là 3 khi a=b=c=1

26 tháng 10 2016

khói quá

27 tháng 10 2016

1.

Áp dụng hệ quả cô si:

\(\left(a^2+b^2+c^2\right)^{1000}\le3^{999}\left(a^{2000}+b^{2000}+c^{2000}\right)=3^{1000}\)

=>\(a^2+b^2+c^2\le3\)Dấu = khi a=b=c=1

không biết đúng hay sai đâu

17 tháng 8 2016

\(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

\(M\le\frac{1}{4}\left[\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{c+a}+\frac{ca}{a+b}+\frac{ca}{b+c}\right]\)

\(=\frac{1}{4}\left[\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}+\frac{c\left(a+b\right)}{a+b}\right]=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)

16 tháng 8 2016

 chịu thôi chị ơi!

Ai trả lời câu này được bái luôn thành sư phụ!!!!!

17 tháng 12 2019

Ta có:

\(\sqrt[3]{a+b}=\sqrt[3]{\frac{9}{4}}.\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{\left(a+b\right)+\frac{2}{3}+\frac{2}{3}}{3}\)

Tương tự:

\(\sqrt[3]{b+c}\le\frac{\left(b+c\right)+\frac{2}{3}+\frac{2}{3}}{3}\)

\(\sqrt[3]{c+a}\le\frac{\left(c+a\right)+\frac{2}{3}+\frac{2}{3}}{3}\)

\(\Rightarrow\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\le\sqrt[3]{\frac{9}{4}}.\frac{2\left(a+b+c\right)+4}{3}\)

\(=\sqrt[3]{\frac{9}{4}}.\frac{6}{3}=\sqrt[3]{18}\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{2}{3}\\b+c=\frac{2}{3}\\c+a=\frac{2}{3}\end{cases}}\)\(\Leftrightarrow a=b=c=\frac{1}{3}\))

20 tháng 12 2019

Em làm sai tại đây nhé:

\(\sqrt[3]{a+b}=\sqrt[3]{\frac{9}{4}}.\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\sqrt[3]{\frac{9}{4}}.\frac{1}{3}.\left(a+b+\frac{2}{3}+\frac{2}{3}\right)\)

1 tháng 5 2017

Với mọi x, y > 0 ta luôn có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) 

Đẳng thức xảy ra   \(\Leftrightarrow\)  x = y

Ta có:   \(\frac{2}{2a+b+c}=\frac{1}{2}.\frac{4}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(=\frac{1}{8}\left(\frac{4}{a+b}+\frac{4}{a+c}\right)\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}\right)=\frac{1}{8}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)\)  (1)

Tương tự \(\frac{2}{2b+c+a}\le\frac{1}{8}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\) (2)   và    \(\frac{2}{2c+a+b}\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right)\)  (3)

Cộng (1), (2) và (3) ta được: \(A\le\frac{1}{8}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}.3=\frac{3}{2}\)

Vậy \(A_{max}=\frac{3}{2}\) \(\Leftrightarrow\) \(a=b=c=1\)

8 tháng 8 2016

Có \(\sqrt{2a+b+1}\le\frac{2a+b+1+4}{4}\)
Tương tự \(\sqrt{2b+c+1}\le\frac{2b+c+1+4}{4},\sqrt{2c+a+1}\le\frac{2c+a+1+4}{4}\)
\(\Rightarrow A\le\frac{2a+b+1+2c+a+1+2b+c+1+4+4+4}{4}=6\)
dấu = xảy ra khi a=b=c và a+b+c=3=>a=b=c=1