Tính giá trị nhỏ nhất của biểu thức sau
C=(x+3)2-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(A=\left(x-1\right)\left(x-3\right)+11\)
\(=x^2-4x+3+11\)
\(=x^2-4x+4+8\)
\(=\left(x-2\right)^2+8\ge8\forall x\)
Dấu '=' xảy ra khi x=2
b: Ta có: \(B=-4x^2+4x+5\)
\(=-\left(4x^2-4x+1-6\right)\)
\(=-\left(2x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
a: Khi x=-2 thì \(M=3-\left(-2-1\right)^2=3-9=-6\)
Khi x=0 thì \(M=3-\left(0-1\right)^2=2\)
Khi x=3 thì \(M=3-\left(3-1\right)^2=3-2^2=-1\)
b: Để M=6 thì \(3-\left(x-1\right)^2=6\)
\(\Leftrightarrow\left(x-1\right)^2=-3\)(loại)
c: \(M=-\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi x=1
a, Thay x=-2 vào M ta có:
\(M=3-\left(-2-1\right)^2=3-\left(-3\right)^2=3-9=-6\)
Thay x=0 vào M ta có:
\(M=3-\left(0-1\right)^2=3-\left(-1\right)^2=3-1=2\)
Thay x=3 vào M ta có:
\(M=3-\left(3-1\right)^2=3-2^2=3-4=-1\)
b, Để M=6 thì:
\(3-\left(x-1\right)^2=6\\ \Leftrightarrow\left(x-1\right)^2=-3\left(vô.lí\right)\)
c, Ta có: \(\left(x-1\right)^2\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
\(\Rightarrow M=3-\left(x-1\right)^2\le3\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
Vậy \(M_{max}=3\Leftrightarrow x=1\)
\(A=\left(x-1\right)^2-3\)
a) Với x = -2, ta có:
\(A=\left(-2-1\right)^2-3=6\)
b) \(\left(x-1\right)^2-3\ge3\text{ vì }\left(x-1\right)^2\ge0\forall x\inℝ\)
\(\Rightarrow MIN_A=3\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: \(MIN_A=3\Leftrightarrow x=1\)
Khong chac dau nhe .-.
A=(x-1)2-3
Với x=-2
Ta có:
A=(-2-1)2-3
A=(-3)2-3
A=9-6
A=3
Vậy A=3 với x=-2
b)Tính GTNN của biểu thức A
Để biểu thức A đạt GTNN <=>(x-1)2
<=>(x-1) đạt GTNN
<=>x=1
Vậy với x =1 thì biểu thức A đạt GTNN
+) \(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\)≥0 ∀x
⇒\(A\)≥2 ∀x
Min A=2⇔\(x=3\)
+) \(B=11-x^2\)
Câu này chỉ tìm được max thôi nha
\(P=\left(x^2-3\right)\left(x^2+2\right)=x^4-x^2-6=x^4-2.\frac{1}{2}x^2+\frac{1}{4}-\frac{25}{4}\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{25}{4}\ge\frac{25}{4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTNN P là 25/4 khi x = 1/2
nhầm dòng 2 rồi, nhưng lớp 7 mà khó vậy á :(
\(=\left(x^2-\frac{1}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)
Dấu ''='' xảy ra khi \(x^2=\frac{1}{2}\Leftrightarrow x=\pm\frac{1}{\sqrt{2}}=\pm\frac{\sqrt{2}}{2}\)
Vậy GTNN P là -25/4 khi \(x=\pm\frac{\sqrt{2}}{2}\)
C=(x+3)2-3
Ta thấy: \(\left(x+3\right)^2\ge0\)
\(\Rightarrow\left(x+3\right)^2-3\ge-3\)
MinC= -3 khi x = -3
(x+3)2>=0 với mọi x
(x+3)2-3>=-3
C>=-3
già trị nhỏ nhất của C=-3 <=> x+3=0<=>x=-3