K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

Ta có :

\(2x-x^2\)

\(=-\left(x^2-2x+1-1\right)\)

\(=-\left(x-1\right)^2+1\)

Vì \(\left(x-1\right)^2\ge\forall x\)

\(\Leftrightarrow-\left(x-1\right)^2\le0\forall x\)

\(\Leftrightarrow-\left(x-1\right)^2+1\le1\)

Vậy ĐPCM

15 tháng 7 2019

1) Đề sai, thử với x = -2 là thấy không thỏa mãn.

Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:

\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)

\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)

Không thể xảy ra dấu đẳng thức.

18 tháng 3 2020

Giải thích các bước giải:

 a2=a.aa2=a.a

Th1 a<0

=>−a2=−(−a)(−a)−a2=−(−a)(−a)

a2>=0với mọi a a2>=0với mọi a

=> −a2=a2.(−1)<=0−a2=a2.(−1)<=0

a2a2=a.a

a<0

a2=(−a)(−a)=a2a2=(−a)(−a)=a2   >= 0 với mọi a

a>=0

a2>=0

Vt lại cho dễ hiểu

Ta có  \(\hept{\begin{cases}a^2=a.a\\-\left(a^2\right)=-\left(a.a\right)\end{cases}}\)\(\forall a\in Z\)

Th1: \(a\in Z;a\ge0\)

Khi đó a . a ≥  0

\(\Leftrightarrow\hept{\begin{cases}a^2\ge0\\-\left(a.a\right)\le0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2\ge0\\-\left(a^2\right)\le0\end{cases}}\) (1)

TH2: \(a\in Z;a< 0\)

Khi đó a . a > 0

\(\Leftrightarrow\hept{\begin{cases}a^2>0\\-\left(a^2\right)< 0\end{cases}}\) (2)

Từ (1) và (2) => đpcm 

T chỉ vt lại theo bài của bạn Linh thôi đóa

24 tháng 11 2016

a, giá trị tuyệt đối của a+b luôn nhỏ hơn giá trị tuyệt đối của a cộng giá trị tuyệt đối củab

dấu bằng xảy ra khi và chỉ khi

a=b=0

b, - /a/ < a ( với mọi a thuộc Z)

dấu bằng xảy ra khi a=0

tương tự ta có

-/a/ < a

dấu bằng xảy ra khi

a=0

9 tháng 3 2017

a chỉ có thể băng 0 thôi!!

20 tháng 1 2017

\(x+y=2\)

\(\Leftrightarrow x=2-y\left(1\right)\)

Giả sử: \(x.y\le1\)

\(\Leftrightarrow\left(2-y\right).y\le1\)

\(\Leftrightarrow y^2-2.y+1\ge0\),

\(\Leftrightarrow\left(y-1\right)^2\ge0\)

\(\Leftrightarrow y\ge1\)

Từ (1) và (2) suy ra:\(x.y\le1\)

20 tháng 1 2017

(2) ở đâu bnNguyễn Phương Trâm

27 tháng 7 2016

Vì x+y=2 -> x=2-y 
ta có: xy=(2-y)y 
=2y-y^2 
=-y^2+2y-1+1 
=-(y-1)^2+1 
Vì (y-1)^2>=0 -> -(y-1)^2<=0(với mọi y) 
-> -(y-1)^2+1 <=1(với mọi y) 
Vậy xy<=1

27 tháng 7 2016

ta có xy<=(x+y)^2/4 
cm 
<=> 4xy<=x^2+y^2+2xy 
<=> (x^2+y^2-2xy)>=0 
<=>(x-y)^2>=0 (dúng0) 
áp dụng xy<=(x+y)^2/4=2^2/4=1 
daứ = xảy ra là x=y=1 

27 tháng 9 2019

x+y=2

\(\Rightarrow\)x=1; x=0; x=-1; x=-2;...

y=1; y=2; y=3; y=4;...

\(\Rightarrow\)x.y= 1.1=1=1

0.2=0<1

-1.3=-3<1

-2.4=-8<1

.............

\(\Rightarrow\)Nếu x+y=2 thì x.y\(\le\)1

27 tháng 9 2019

Ta có: \(x+y=2\)

\(\Rightarrow x=2-y.\)

Có: \(x.y=\left(2-y\right).y\)

\(\Rightarrow x.y=2y-y^2\)

\(\Rightarrow x.y=-y^2+2y-1+1\)

\(\Rightarrow x.y=-\left(y-1\right)^2+1.\)

\(\left(y-1\right)^2\ge0\) \(\forall y.\)

\(\Rightarrow-\left(y-1\right)^2\le0\) \(\forall y.\)

\(\Rightarrow-\left(y-1\right)^2+1\le1\) \(\forall y.\)

\(\Rightarrow x.y\le1\left(đpcm\right).\)

Chúc bạn học tốt!