Chứng tỏ rằng: 2x - x^2 nhỏ hơn hoặc bằng 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Đề sai, thử với x = -2 là thấy không thỏa mãn.
Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:
\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)
\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)
Không thể xảy ra dấu đẳng thức.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải thích các bước giải:
a2=a.aa2=a.a
Th1 a<0
=>−a2=−(−a)(−a)−a2=−(−a)(−a)
a2>=0với mọi a a2>=0với mọi a
=> −a2=a2.(−1)<=0−a2=a2.(−1)<=0
a2a2=a.a
a<0
a2=(−a)(−a)=a2a2=(−a)(−a)=a2 >= 0 với mọi a
a>=0
a2>=0
Vt lại cho dễ hiểu
Ta có \(\hept{\begin{cases}a^2=a.a\\-\left(a^2\right)=-\left(a.a\right)\end{cases}}\)\(\forall a\in Z\)
Th1: \(a\in Z;a\ge0\)
Khi đó a . a ≥ 0
\(\Leftrightarrow\hept{\begin{cases}a^2\ge0\\-\left(a.a\right)\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2\ge0\\-\left(a^2\right)\le0\end{cases}}\) (1)
TH2: \(a\in Z;a< 0\)
Khi đó a . a > 0
\(\Leftrightarrow\hept{\begin{cases}a^2>0\\-\left(a^2\right)< 0\end{cases}}\) (2)
Từ (1) và (2) => đpcm
T chỉ vt lại theo bài của bạn Linh thôi đóa
![](https://rs.olm.vn/images/avt/0.png?1311)
a, giá trị tuyệt đối của a+b luôn nhỏ hơn giá trị tuyệt đối của a cộng giá trị tuyệt đối củab
dấu bằng xảy ra khi và chỉ khi
a=b=0
b, - /a/ < a ( với mọi a thuộc Z)
dấu bằng xảy ra khi a=0
tương tự ta có
-/a/ < a
dấu bằng xảy ra khi
a=0
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x+y=2\)
\(\Leftrightarrow x=2-y\left(1\right)\)
Giả sử: \(x.y\le1\)
\(\Leftrightarrow\left(2-y\right).y\le1\)
\(\Leftrightarrow y^2-2.y+1\ge0\),
\(\Leftrightarrow\left(y-1\right)^2\ge0\)
\(\Leftrightarrow y\ge1\)
Từ (1) và (2) suy ra:\(x.y\le1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì x+y=2 -> x=2-y
ta có: xy=(2-y)y
=2y-y^2
=-y^2+2y-1+1
=-(y-1)^2+1
Vì (y-1)^2>=0 -> -(y-1)^2<=0(với mọi y)
-> -(y-1)^2+1 <=1(với mọi y)
Vậy xy<=1
ta có xy<=(x+y)^2/4
cm
<=> 4xy<=x^2+y^2+2xy
<=> (x^2+y^2-2xy)>=0
<=>(x-y)^2>=0 (dúng0)
áp dụng xy<=(x+y)^2/4=2^2/4=1
daứ = xảy ra là x=y=1
![](https://rs.olm.vn/images/avt/0.png?1311)
x+y=2
\(\Rightarrow\)x=1; x=0; x=-1; x=-2;...
y=1; y=2; y=3; y=4;...
\(\Rightarrow\)x.y= 1.1=1=1
0.2=0<1
-1.3=-3<1
-2.4=-8<1
.............
\(\Rightarrow\)Nếu x+y=2 thì x.y\(\le\)1
Ta có: \(x+y=2\)
\(\Rightarrow x=2-y.\)
Có: \(x.y=\left(2-y\right).y\)
\(\Rightarrow x.y=2y-y^2\)
\(\Rightarrow x.y=-y^2+2y-1+1\)
\(\Rightarrow x.y=-\left(y-1\right)^2+1.\)
Vì \(\left(y-1\right)^2\ge0\) \(\forall y.\)
\(\Rightarrow-\left(y-1\right)^2\le0\) \(\forall y.\)
\(\Rightarrow-\left(y-1\right)^2+1\le1\) \(\forall y.\)
\(\Rightarrow x.y\le1\left(đpcm\right).\)
Chúc bạn học tốt!
Ta có :
\(2x-x^2\)
\(=-\left(x^2-2x+1-1\right)\)
\(=-\left(x-1\right)^2+1\)
Vì \(\left(x-1\right)^2\ge\forall x\)
\(\Leftrightarrow-\left(x-1\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-1\right)^2+1\le1\)
Vậy ĐPCM