K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

Ta có : 

\(x+y=1\)

\(\Leftrightarrow\left(x+y\right)^3=1^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=1\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)

\(\Leftrightarrow x^3+y^3+3xy.1=1\)

\(\Leftrightarrow x^3+y^3+3xy=1\)

\(\Leftrightarrow A=1\)

Vậy \(A=1\)

Chúc bạn học tốt ~ 

13 tháng 6 2018

Ta có:x+y=1
=> x^3+3x^2y+3xy^2+y^3
=> x^3+y^3+3xy(x+y)
=> x^3+y^3+3xy=1
P/s: mình cũng ko chắc lắm nha.

 

15 tháng 7 2016

 \(P=x^3+3xy+y^3=x^3+3xy\left(x+y\right)+y^3=\left(x+y\right)^3=1^3=1\)

17 tháng 10 2020

2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)

Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)

Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))

Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1

17 tháng 10 2020

3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)

Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Từ đó suy ra \(ab+bc+ca\le1\)

\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

28 tháng 6 2017

\(x+y=1\Rightarrow\left(x+y\right)^3=1\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=1\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)

\(\Leftrightarrow x^3+y^3+3xy=1\)

13 tháng 6 2016

Từ x+y=1 (GT)

=>(x+y)3=13=1

=>x3+3x2y+3xy2+y3=1 (HĐT)

=>x3+y3+3xy(x+y)=1

=>x3+y3+3xy*1=1

=>x3+y3+3xy=1

13 tháng 6 2016
từ x+y=1=>x=1-y thay vào biểu thức trên ta được: (1-y)^3+3(1-y)y+y^3=1-3y+3y^2-y^3+3y-3y^2+y^3=1
5 tháng 12 2018

\(x^3+3xy+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=x^2+y^2-xy+3xy\)

\(=x^2+2xy+y^2\)

\(=\left(x+y\right)^2\)

\(=1^2\)

\(=1\)

5 tháng 12 2018

\(x^3+3xy+y^3=x^3+3xy.1+y^3\)

                             \(=x^3+3xy\left(x+y\right)+y^3\)

                             \(=x^3+3x^2y+3xy^2+y^3\)

                              \(=\left(x+y\right)^3=1\)

16 tháng 8 2016

\(\hept{\begin{cases}x=a\\\frac{1}{y}=b\end{cases}}\Rightarrow\hept{\begin{cases}a+b\le1\\A=ab+\frac{1}{ab}\end{cases}}\)Bài toán trở về dạng quen thuộc