tìm số tự nhiên bé nhất mà số đó chia cho 5 dư 2 chia 7 dư 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có thể áp dụng phương pháp tìm kiếm thông qua vòng lặp.
Bước 1: Bắt đầu từ số 1, kiểm tra từng số tự nhiên lớn hơn 1 cho đến khi tìm được số thỏa mãn tất cả các điều kiện.
Bước 2: Dùng toán tử % để kiểm tra xem số đó có chia hết cho 5 dư 2 hay không. Nếu không thỏa mãn, ta tiếp tục tăng số lên 1 và kiểm tra tiếp.
Bước 3: Kiểm tra xem số đó có chia hết cho 4 dư 3 hay không. Nếu không thỏa mãn, ta tiếp tục tăng số lên 1 và kiểm tra tiếp.
Bước 4: Kiểm tra xem số đó có chia hết cho 5 hay không. Nếu không thỏa mãn, ta tiếp tục tăng số lên 1 và kiểm tra tiếp.
Bước 5: Kiểm tra xem số đó có chia hết cho 7 dư 6 hay không. Nếu không thỏa mãn, ta tiếp tục tăng số lên 1 và kiểm tra tiếp.
Bước 6: Khi tìm được số thỏa mãn tất cả các điều kiện, ta kết thúc vòng lặp và số đó là số tự nhiên bé nhất cần tìm.
Với các điều kiện đã cho, số tự nhiên bé nhất thỏa mãn là 122, vì 122 chia 5 dư 2, chia 4 dư 3, chia 5 dư 4 và chia 7 dư 6.
Gói số đó là a
Ta có:
a = 3k1 + 2 (k1 thuộc N) => a + 1 = 3k1 + 3 chia hết cho 3
a = 5k2 + 4 (k2 thuộc N) => a + 1 = 5k2 + 5 chia hết cho 5
a = 7k3 + 6 (k3 thuộc N) => a + 1 = 7k3 + 7 chia hết cho 7
=> a + 1 chia hết cho BCNN(3,5,7) = 105
Mà 105 chia hết cho 105
=> a + 1 - 105 chia hết cho 105
=> a - 104 chia hết cho 105
=> a - 104 = 105m (m thuộc N) => a = 105m + 104
Vì m nhỏ nhất = 0 => a nhỏ nhất = 105.0 + 104 = 104
839. Mk nghĩ vậy, nếu bn cần trình bày rõ ràng thì bn đáp lại nhá!!!
- Gọi số cần tìm là a. Ta có: \(\hept{\begin{cases}a=5x+2\\a=7y+6\end{cases}}\Leftrightarrow\hept{\begin{cases}a+8=5x+10\\a+8=7y+14\end{cases}.}\)
- Nên ta thấy \(a+8\)chia hết cho cả 5 và 7 nên \(a+8\)chia hết cho 35. Mà a là số tự nhiên nên \(a+8\ge8\) và a nhỏ nhất nên \(a+8=35\Rightarrow a=27.\)
- Vậy số cần tìm là 27.
Gọi số cần tìm là; A
Khi đó : A chia 5 dw2
a chia 7 dư 6
=> >.......................................
...............................................
.............................................
Gọi a là số cần tìm.
a chia 6 dư 5 nên a + 1 chia hết cho 6
a chia 5 dư 4 nên a + 1 chia hết cho 5
a chia 4 dư 3 nên a + 1 chia hết cho 4
a chia 3 dư 2 nên a + 1 chia hết cho 3
a chia 2 dư 1 nên a + 1 chia hết cho 2
Vậy a + 1 là một số chia hết cho 6; 5; 4; 3; 2
=> a thuộc tập hợp các số : 59; 119; 179; 239
mà a chia hết cho 7 và nhỏ nhất => a = 119
K cho mình nha
gọi số đó là a. ta có a+1 chia hết cho 3,4,5,6. đến đây tự giải quyết
Gọi số tự nhiên đó là a ( a \(\in\)N )
Theo bài ra, ta có:
( a - 2 ) \(⋮\)3
( a - 3 ) \(⋮\)4
( a - 4 ) \(⋮\)5
( a - 6 ) \(⋮\)7
\(\Rightarrow\) ( a + 1 ) \(⋮\)3
( a + 1 )\(⋮\)4
( a + 1 ) \(⋮\)5
( a + 1 )\(⋮\)7
\(\Rightarrow\) ( a + 1 ) \(\in\)BC ( 3, 4, 5, 7 )
Ta thấy: 3, 4, 5, 7 là các số nguyên tố cùng nhau
\(\Rightarrow\)BCNN ( 3, 4, 5, 7 ) = 3 . 4 . 5 . 7 = 420
Mà a là số bé nhất
\(\Rightarrow\)( a + 1 ) = BCNN ( 3, 4, 5, 7 ) = 420
\(\Rightarrow\)a = 419
Vậy .....
PP/ss: Hoq chắc ((:
\(⋮\)
Giải:
Gọi số đó là x
Do x chia 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
=> (x - 1) chia hết 2
(x - 2) chia hết 3
(x - 3) chia hết 4
(x - 4) chia hết 5
(x - 5) chia hết 6
(x - 6) chia hết
=> (x + 1) chia hết cho cả 2, 3, 4, 5, 6, 7
=> (x + 1) là BC(2;3;4;5;6;7)
Mà x nhỏ nhất
=>( x+ 1) là BCNN(2;3;4;5;6;7) = 5.12.7 = 420 => x = 419
Gọi số cần tìm là : a
Ta có :
a chia 5 dư 2 => a + 8 chia hết cho 5
a chia 7 dư 6 => a + 8 chia hết cho 7
=> a + 8 chia hết cho 5 và 7
=> a + 8 chia hết cho 35
Mà các số chia hết cho 35 là : { 0; 35; 70; ...]
=> a = { -8 ; 27; 62;...}
Vì a là STN nhỏ nhất => a = 27
Đ/s : 27
số đó ;là 27 bạn nhé !