Chứng minh x thuộc z
x+10*2:1,34
1.2.............1022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐẶt \(A=x^2+y^2+z^2\Rightarrow4A-12=4\left(x^2+y^2+z^2\right)-2\left(x+y+z+xy+yz+zx\right)\)
\(\Rightarrow3A-12=\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2-3\)
\(\Rightarrow3A\ge9\Rightarrow A\ge3\)
dấu= xảy ra khi x=y=z=1
`@ x+y+z=1`.
`<=>` \(\left\{{}\begin{matrix}x=1-y-z\\y=1-z-x\\z=1-x-y\end{matrix}\right.\)
`P=(x+y)^2/(xy+1-x-y).(y+z)^2/(yz-y-z+1).(x+z)^2/(xy-x-y+1)`.
`<=> ((1-z)^2(1-y)^2(1-x)^2)/((1-x)(1-y)(1-y)(1-z)(1-z)(1-x).`
`=1.`
Vậy `P` không phụ thuộc vào giá trị của biến.
Sửa lại đề là x;y;z khác -1.
\(A=\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+z+x+1}=\)
\(A=\frac{x\left(y+1\right)+x+1}{x\left(y+1\right)+y+1}+\frac{y\left(z+1\right)+y+1}{y\left(z+1\right)+z+1}+\frac{z\left(x+1\right)+z+1}{z\left(x+1\right)+x+1}=\)
\(A=\frac{x\left(y+1\right)+x+1}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(z+1\right)+y+1}{\left(y+1\right)\left(z+1\right)}+\frac{z\left(x+1\right)+z+1}{\left(z+1\right)\left(x+1\right)}=\)vì x;y;z khác -1 nên:
\(A=\frac{x}{x+1}+\frac{1}{y+1}+\frac{y}{y+1}+\frac{1}{z+1}+\frac{z}{z+1}+\frac{1}{x+1}=\)
\(A=\frac{x}{x+1}+\frac{1}{x+1}+\frac{y}{y+1}+\frac{1}{y+1}+\frac{z}{z+1}+\frac{1}{z+1}=\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}=1+1+1=3\)
A = 3 với mọi x;y;z khác -1 nên A không phụ thuộc vào x;y;z. đpcm
`@ x+y+z=1`.
`<=>` \(\left\{{}\begin{matrix}x=1-y-z\\y=1-z-x\\z=1-x-y\end{matrix}\right.\)
`P=(x+y)^2/(xy+1-x-y).(y+z)^2/(yz-y-z+1).(x+z)^2/(xy-x-y+1)`.
`<=> ((1-z)^2(1-y)^2(1-x)^2)/((1-x)(1-y)(1-y)(1-z)(1-z)(1-x).`
`=1.`
Vậy `P` không phụ thuộc vào giá trị của biến.
Xét \(\hept{\begin{cases}4x^2+z^2\ge4xz\\4y^2+z^2\ge4yz\\2x^2+2y^2\ge4xy\end{cases}}\)
\(\Leftrightarrow2\left(3x^2+3y^2+z^2\right)\ge4\left(xy+yz+zx\right)\)
\(\Leftrightarrow3x^2+3y^2+z^2\ge10\)
dấu bằng xảy ra khi và chỉ khi \(x=y=1\)và \(z=2\)
\(=\dfrac{x}{xy}-\dfrac{y}{xy}+\dfrac{y}{yz}-\dfrac{z}{yz}+\dfrac{z}{zx}-\dfrac{x}{zx}\)
\(=\dfrac{1}{y}-\dfrac{1}{x}+\dfrac{1}{z}-\dfrac{1}{y}+\dfrac{1}{x}-\dfrac{1}{z}\)
= 0
=> KO PHỤ THUỘC
* Chứng minh biểu thức sau phụ thuộc vào x , y , z
\(\dfrac{x-y}{xy}+\dfrac{y-z}{yz}+\dfrac{z-x}{zx}\)
= \(\dfrac{(x-y)z+(y-z)x+(z-x)y}{xyz} \)
= \(\dfrac{xz-yz+xy-xz+zy-xy}{xyz}\)
= \(\dfrac{0}{xyz}\)
= 0
Vậy \(\dfrac{x-y}{xy} + \dfrac{y-z}{yz} + \dfrac{z-x}{zx} \) phụ thuộc vào x , y ,z
a) x - y + z = 0
<=> (x - y + z)2 = 0
<=> (x - y + z).x - (x - y + z).y + (x - y + z).z = 0
<=> x2 - xy + xz - xy + y2 - zy + xz - zy + z2 = 0
=> x2 + y2 + z2 - 2xy + 2xz - 2zy = 0
=> x2 + y2 + z2 = 2xy - 2xz + 2zy = 2.(xy - xz + yz)
Vì \(x^2+y^2+z^2\ge0\) nên \(2.\left(xy-xz+yz\right)\ge0\)
\(\Leftrightarrow xy-xz+yz\ge0\left(đpcm\right)\)
b) ĐK: x ϵ N
\(8.2^n+2^{n+1}=8.2^n+2^n.2=2^n.\left(8+2\right)=2^n.10⋮10\)
a mik ko biết
b. 8.2^n +2^(n+1)
A= 8. 2^n + 2^n +2
=2^n(8+2)
=2^n.10
vậy A chia hết cho 10 (đpcm)
\(x^2+y^2+z^2\ge xy+yz+zx\\ \Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2zx+z^2\right)\ge0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\left(luôn.đúng\right)\)
Dấu "=' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\x-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=z\\x=z\end{matrix}\right.\Leftrightarrow x=y=z\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
Dấu "=" xảy ra khi \(x=y=z\)