2 x 3 = ...
3 x 2 = ..
so sánh 2 x 3 và 3 x 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy: số mũ của x trong hai đơn thức trên bằng nhau (đều bằng 2).
b) \(2{x^2} + 3{x^2} = {x^2} + {x^2} + {x^2} + {x^2} + {x^2} = 5{x^2}\) .
c) Ta có: \((2 + 3){x^2} = 5{x^2}\).
Vậy \(2{x^2} + 3{x^2}\) = \((2 + 3){x^2}\).
a) Với \({x_0}\) bất kì, ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} + {x^2} - x_0^3 - x_0^2}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x{x_0} + x_0^2} \right) + \left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x{x_0} + x_0^2 + x + {x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x{x_0} + x_0^2 + x + {x_0}} \right) = 3x_0^2 + 2{x_0}\end{array}\)
Vậy hàm số \(y = {x^3} + {x^2}\) có đạo hàm là hàm số \(y' = 3{x^2} + 2x\)
b) \({\left( {{x^3}} \right)^,} + {\left( {{x^2}} \right)^,} = 3{x^2} + 2x\)
Do đó \(\left( {{x^3} + {x^2}} \right)'\) = \(\left( {{x^3}} \right)' + \left( {{x^2}} \right)'.\)
1) ĐKXĐ của phân thức là : \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-3\ne0\\x-9\ne0\\\sqrt{x}+3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne3\\\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\ne0\\\sqrt{x}\ne-3\left(LĐ\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
Ta có : \(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right)\)
\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\left(\dfrac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right)\)
\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\dfrac{x+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\dfrac{x+\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}.\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}\)
\(P=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)
2) Với \(x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{3}-1\)
Do đó : \(P=\dfrac{\sqrt{3}-1+3}{\sqrt{3}-1+1}\)
\(P=\dfrac{\sqrt{3}+2}{\sqrt{3}}=\dfrac{3+2\sqrt{3}}{3}\)
3) Xét hiệu của : P với 3
\(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-3\)
\(=\dfrac{-2\sqrt{x}}{\sqrt{x}+1}\)
Ta thấy : \(\sqrt{x}+1\ge1;-2\sqrt{x}\le0\)
\(\Rightarrow\dfrac{-2\sqrt{x}}{\sqrt{x}+1}\le0\)
\(\Rightarrow P\le3\)
Dấu bằng xảy ra : \(\Leftrightarrow x=0\). Thế lại ta thấy ktm nên P<3
a) \(B=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
ĐKXĐ: \(x\ge0,x\ne1\)
\(B=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{2}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{2-5\sqrt{x}}{\sqrt{x+3}}\)
b) Để \(B=\frac{1}{2}\Rightarrow\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)\(\Rightarrow\sqrt{x}+3=4-10\sqrt{x}\Rightarrow11\sqrt{x}=1\Rightarrow\sqrt{x}=\frac{1}{12}\Rightarrow x=\frac{1}{121}\)(Thoả mãn ĐKXĐ)
Vậy x=1/121 thì B =1/2
Câu 1: So sánh Biểu thức 1: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) − 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) (a+1)(a+2)(a+3)−a(a+1)(a+2) Biểu thức 2: 3 ( 𝑎 + 1 ) ( 𝑎 + 2 ) 3(a+1)(a+2) Bước 1: Rút gọn biểu thức 1: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) − 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) (a+1)(a+2)(a+3)−a(a+1)(a+2) Ta có thể khai triển từng phần: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) = ( 𝑎 + 1 ) ( 𝑎 2 + 5 𝑎 + 6 ) = 𝑎 3 + 6 𝑎 2 + 11 𝑎 + 6 (a+1)(a+2)(a+3)=(a+1)(a 2 +5a+6)=a 3 +6a 2 +11a+6 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) = 𝑎 ( 𝑎 2 + 3 𝑎 + 2 ) = 𝑎 3 + 3 𝑎 2 + 2 𝑎 a(a+1)(a+2)=a(a 2 +3a+2)=a 3 +3a 2 +2a Vậy biểu thức 1 trở thành: ( 𝑎 3 + 6 𝑎 2 + 11 𝑎 + 6 ) − ( 𝑎 3 + 3 𝑎 2 + 2 𝑎 ) = 3 𝑎 2 + 9 𝑎 + 6 (a 3 +6a 2 +11a+6)−(a 3 +3a 2 +2a)=3a 2 +9a+6 Biểu thức 2: 3 ( 𝑎 + 1 ) ( 𝑎 + 2 ) = 3 ( 𝑎 2 + 3 𝑎 + 2 ) = 3 𝑎 2 + 9 𝑎 + 6 3(a+1)(a+2)=3(a 2 +3a+2)=3a 2 +9a+6 Như vậy, biểu thức 1 và biểu thức 2 đều có giá trị bằng nhau. Do đó, cả hai biểu thức bằng nhau. Câu 2: Tính M Biểu thức: 𝑀 = 1 × 2 + 2 × 3 + 3 × 4 + ⋯ + 2002 × 2003 M=1×2+2×3+3×4+⋯+2002×2003 Bước 1: Viết lại tổng: 𝑀 = ∑ 𝑘 = 1 2002 𝑘 ( 𝑘 + 1 ) M= k=1 ∑ 2002 k(k+1) Bước 2: Rút gọn 𝑘 ( 𝑘 + 1 ) k(k+1): 𝑘 ( 𝑘 + 1 ) = 𝑘 2 + 𝑘 k(k+1)=k 2 +k Do đó: 𝑀 = ∑ 𝑘 = 1 2002 ( 𝑘 2 + 𝑘 ) = ∑ 𝑘 = 1 2002 𝑘 2 + ∑ 𝑘 = 1 2002 𝑘 M= k=1 ∑ 2002 (k 2 +k)= k=1 ∑ 2002 k 2 + k=1 ∑ 2002 k Bước 3: Tính từng tổng: Tổng ∑ 𝑘 = 1 2002 𝑘 2 ∑ k=1 2002 k 2 là tổng bình phương của các số tự nhiên, có công thức: ∑ 𝑘 = 1 𝑛 𝑘 2 = 𝑛 ( 𝑛 + 1 ) ( 2 𝑛 + 1 ) 6 k=1 ∑ n k 2 = 6 n(n+1)(2n+1) Áp dụng với 𝑛 = 2002 n=2002: ∑ 𝑘 = 1 2002 𝑘 2 = 2002 ( 2002 + 1 ) ( 2 × 2002 + 1 ) 6 = 2002 × 2003 × 4005 6 k=1 ∑ 2002 k 2 = 6 2002(2002+1)(2×2002+1) = 6 2002×2003×4005 Tổng ∑ 𝑘 = 1 2002 𝑘 ∑ k=1 2002 k là tổng các số tự nhiên, có công thức: ∑ 𝑘 = 1 𝑛 𝑘 = 𝑛 ( 𝑛 + 1 ) 2 k=1 ∑ n k= 2 n(n+1) Áp dụng với 𝑛 = 2002 n=2002: ∑ 𝑘 = 1 2002 𝑘 = 2002 ( 2002 + 1 ) 2 = 2002 × 2003 2 k=1 ∑ 2002 k= 2 2002(2002+1) = 2 2002×2003 Bước 4: Tính tổng 𝑀 M: 𝑀 = 2002 × 2003 × 4005 6 + 2002 × 2003 2 M= 6 2002×2003×4005 + 2 2002×2003 Rút gọn biểu thức: 𝑀 = 2002 × 2003 ( 4005 6 + 1 2 ) M=2002×2003( 6 4005 + 2 1 ) Tính phần trong dấu ngoặc: 4005 6 + 1 2 = 4005 + 3 6 = 4008 6 = 668 6 4005 + 2 1 = 6 4005+3 = 6 4008 =668 Vậy: 𝑀 = 2002 × 2003 × 668 M=2002×2003×668 Đây là kết quả của phép tính 𝑀 M.
2 x 3 = 6
3 x 2 = 6
2 x 3 = 3 x 2
2 x 3 = 6
3 x 2 = 6
6 = 6 nên 2 x 3 = 3 x 2