Cho ba số dương a,b,c . CMR : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử a\(\le\)b \(\le\)c.
khi đó \(\frac{a}{b+c}\le\frac{b}{c+a}\le\frac{c}{a+b}\)
áp dụng BĐT Trê bư sép ta có:
\(\left(a^2+b^2+c^2\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le3\left(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\right)=3VT\)
lại có a2 + b2 + c2 \(\ge\) \(\frac{\left(a+b+c\right)^2}{3}\) nên:
3VT \(\ge\frac{\left(a+b+c\right)^2}{3}\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
hay VT \(\ge\left(\frac{a+b+c}{3}\right)^2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\). đpcm
Cho $a, b>0$.Chứng minh rằng $\frac{1}{{a^3 }} + \frac{{a^3 }}{{b^3 }} + b^3 \ge \frac{1}{a} + \frac{a}{b} + b$ - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán
Câu a : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Leftrightarrow\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\ge\frac{9}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)
\(VT=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{\left(a+b+c\right).9}{2\left(a+b+c\right)}=\frac{9}{2}\) (đpcm)
Dấu "\("="\) xảy ra khi \(a=b=c\)
Câu b : \(VT=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\left(đpcm\right)\)
Dấu = xảy ra khi a=b=c
Bạn có thể làm cho mik bằng cách hệ số bất định được ko?Cảm ơn bạn rất nhiều
Lời giải:
\(\text{VT}=a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{ca^2}{a^2+c^2}=(a+b+c)-\left(\frac{ab^2}{a^2+b^2}+\frac{bc^2}{b^2+c^2}+\frac{ca^2}{c^2+a^2}\right)(1)\)
Áp dụng BĐT AM-GM:
\(\frac{ab^2}{a^2+b^2}+\frac{bc^2}{b^2+c^2}+\frac{ca^2}{c^2+a^2}\leq \frac{ab^2}{2ab}+\frac{bc^2}{2bc}+\frac{ca^2}{2ac}=\frac{a+b+c}{2}(2)\)
Từ $(1);(2)\Rightarrow \text{VT}\geq a+b+c-\frac{a+b+c}{2}=\frac{a+b+c}{2}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
sửa lại
\(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
\(=a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\)
áp dụng bđt cauchy ta có:
\(b^2+1\ge2b;c^2+1\ge2c;a^2+1\ge2a\)
\(\Rightarrow a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\ge a-\frac{ab^2}{2b}+b-\frac{bc^2}{2b}+c-\frac{ca^2}{2a}\)
\(=a+b+c-\frac{ab+bc+ca}{2}\)
áp dụng cauchy ta có:
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow a+b+c-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\left(Q.E.D\right)\)
dấu bằng xảy ra khi a=b=c=1
đặt \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}=a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\)
\(=\left(a+b+c\right)-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\le3-\left(\frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{2a}\right)=3-\left(\frac{ab+bc+ca}{2}\right)\ge3-\frac{\left(a+b+c\right)^2}{6}=\frac{3}{2}\left(Q.E.D\right)\)
#)Giải :
Áp dụng BĐT Cauchy :
\(\frac{ab}{c}+\frac{bc}{a}\ge2.\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\left(1\right)\)
Chứng minh tương tự, ta được :
\(\frac{bc}{a}+\frac{ca}{b}\ge2c\left(2\right)\)
\(\frac{ab}{c}+\frac{ca}{b}\ge2a\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\)\(\Rightarrow2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\left(đpcm\right)\)
Áp dụng BĐT AM-GM ta có:
\(\hept{\begin{cases}\frac{bc}{a}+\frac{ac}{b}\ge2.\sqrt{\frac{bc}{a}.\frac{ac}{b}}=2.c\\\frac{bc}{a}+\frac{ab}{c}\ge2.\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\\\frac{ac}{b}+\frac{ab}{c}\ge2.\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\end{cases}}\Leftrightarrow2.\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)( tự giải rõ ra nhé )
BĐT AM-GM:
\(a+a_1+a_2+...+a_n\ge n\sqrt[n]{a.a_1.a_2.....a_n}\)
Dấu " = " xảy ra \(\Leftrightarrow a=a_1=a_2=...=a_n\)
\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
\(\Leftrightarrow\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}\ge a+b+c\)
\(\Leftrightarrow abc.\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge a+b+c\)
Giải tiếp nhé
Lời giải:
\(\text{BĐT}\Leftrightarrow \frac{\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}}{abc}\geq\frac{ab+bc+ac}{abc}\)
\(\Leftrightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq ab+bc+ac\) \((\star)\)
Điều này hiển nhiên đúng vì theo Cauchy-SChwarz kết hợp AM-GM:
\(\text{VT}_{\star}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\geq \frac{(a^2+b^2+c^2)^2}{ab+bc+ac}\geq ab+bc+ac\)
Do đó ta có đpcm
Dấu bằng xảy ra khi $a=b=c$
Áp dụng bất đẳng thức Cauchy-Schwarz ta có :
\(VT\ge\frac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\frac{a+b+c}{4}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow a=b=c\)
\(\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(\ge\left(a+b+c\right)\left(\frac{9}{b+c+c+a+a+b}\right)=\frac{\left(a+b+c\right)9}{2\left(a+b+c\right)}=\frac{9}{2}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{9}{2}-3=\frac{3}{2}\)
\(VT=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(=\frac{1}{2}[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)]\)\(\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
C/m BĐT phụ \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\text{(*) }\) với x, y, z dương
Áp dụng BĐT Cô-si ta có:
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)
ÁP dụng BĐT (*) ta có:
\(VT=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\)\(\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)
\(VT\ge\frac{1}{2}.9-3=\frac{3}{2}\left(đpcm\right)\)