Cho a,b,c là 3 cạnh của một tam giác thỏa \(a+b+c=2\)
Chứng minh \(a^2+b^2+c^2\ge\frac{52}{27}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a,b,c là ba cạnh của tam giác nên \(\begin{cases}a+b>c\\b+c>a\\a+c>b\end{cases}\) \(\Rightarrow\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}\)
do đó các số \(\frac{a^2}{b+c-a},\frac{b^2}{a+c-b},\frac{c^2}{a+b-c}\) là các số dương.
Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) được
\(\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)-\left(a+b+c\right)}=\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Ta có a < b + c; b < c + a; c < a + b nên từ a + b + c = 2 suy ra a, b, c < 1.
BĐT cần cm tương đương:
\(\left(a+b+c\right)^2+2abc< 2\left(ab+bc+ca\right)+2\)
\(\Leftrightarrow abc-\left(ab+bc+ca\right)+1< 0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)< 0\).
Bất đẳng thức trên luôn đúng do a, b, c < 1.
Vậy ta có đpcm.
"Chấm" nhẹ hóng cao nhân ạ :)
P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)
\(VT=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\)
\(VT\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
\(\Rightarrow\) Tam giác là tam giác đều
Chỉnh sửa: \(a^2+b^2+c^2+2abc\ge\frac{52}{27}\)
Theo BĐT AM-GM ta có:
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\left(\frac{3-\left(a+b+c\right)}{3}\right)^3=\frac{1}{27}\)
\(\Leftrightarrow ab+bc+ca+1-\left(a+b+c\right)-abc\le\frac{1}{27}\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2+2abc\right)\le\frac{56}{27}\)
\(\Leftrightarrow\left(a+b+c\right)^2-\left(a^2+b^2+c^2+2abc\right)\le\frac{56}{27}\)
\(\Leftrightarrow4-\left(a^2+b^2+c^2+2abc\right)\le\frac{56}{27}\)
\(\Leftrightarrow a^2+b^2+c^2+2abc\ge\frac{52}{27}\)