Tìm số tự nhiên n, biết:
3/n > 2 1/4(hỗn số)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Vì 3/n>2 và 1/4 nên n phải = 1 vì nếu n = 2 thì 3/2=1,5<2 và 1/4
Vậy n=1
+, Nếu n=3 thì A = 9 = 3^2 ( t/m )
+, Nếu n=4 thì A = 33 ( ko t/m )
+, Nếu n >= 5 thì A sẽ có tận cùng chữ số tận cùng của 1!+2!+3!+4! nên A có chữ số tận cùng là 3 (vì 5! ; 6! ; ... ; n! đều có chữ số tc là 0)
=> A ko phải là số chinhd phương
Vậy n = 3
Tk mk nha
Câu 1:Như ta đã biết thì :
BCNN(a,b).ƯCLN(a,b)=ab
Áp dụng vào thì:
60.ƯCLN(a,b)=180
Suy ra ƯCLN(a,b)=3
Gọi d là ƯCLN(a,b).
Hay a=dm,b=dn với ƯCLN(m,n)=1
Hay dm.dn=180
m.n=180:(3.3)
mn=20
\(\Rightarrow\)
m | 1 | 2 | 4 | 5 | 10 | 20 |
n | 20 | 10 | 5 | 4 | 2 | 1 |
\(\Rightarrow\)
a | 3 | 6 | 12 | 15 | 30 | 60 |
b | 60 | 30 | 15 | 12 | 6 | 3 |
Vậy:\(a;b\in\left(3;60\right);\left(6;30\right);\left(12;15\right);\left(15;12\right);\left(30;6\right);\left(60;3\right)\)
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105
Ta có :
Đ/K : n khác 0
\(\frac{3}{n}>2\frac{1}{4}\)
\(\Rightarrow\frac{3}{n}>\frac{9}{4}\)
\(\Rightarrow\frac{9}{3n}>\frac{9}{4}\)
\(\Rightarrow3n< 4\)
Mà n là số tự nhiên
\(\Rightarrow n=1\)
Vậy \(n=1\)
Chúc bạn học tốt !!!
n=1 vì 2 1/4= 9/4=2,25 chỉ có 3/1 lớn hơn nên n=1